Advanced Search

Show simple item record

dc.contributor.authorDokur, Emrah
dc.contributor.authorKarakuzu, Cihan
dc.contributor.authorYüzgeç, Uğur
dc.contributor.authorKurban, Mehmet
dc.date.accessioned2021-09-20T13:30:51Z
dc.date.available2021-09-20T13:30:51Z
dc.date.issued2021en_US
dc.identifier.citationDokur, E., Karakuzu, C., Yüzgeç, U., & Kurban, M. (2021). Using optimal choice of parameters for meta-extreme learning machine method in wind energy application. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering.en_US
dc.identifier.issn0332-1649
dc.identifier.urihttp://dx.doi.org/10.1108/COMPEL-07-2020-0246
dc.identifier.urihttps://hdl.handle.net/11552/2005
dc.description.abstractPurpose – This paper aims to deal with the optimal choice of a novel extreme learning machine (ELM) architecture based on an ensemble of classic ELM called Meta-ELM structural parameters by using a forecasting process. Design/methodology/approach – The modelling performance of the Meta-ELM architecture varies depending on the network parameters it contains. The choice of Meta-ELM parameters is important for the accuracy of the models. For this reason, the optimal choice of Meta-ELM parameters is investigated on the problem of wind speed forecasting in this paper. The hourly wind-speed data obtained from Bilecik and Bozcaada stations in Turkey are used. The different number of ELM groups (M) and nodes (Nh) are analysed for determining the best modelling performance of Meta-ELM. Also, the optimal Meta-ELM architecture forecasting results are compared with four different learning algorithms and a hybrid meta-heuristic approach. Finally, the linear model based on correlation between the parameters was given as three dimensions (3D) and calculated. Findings – It is observed that the analysis has better performance for parameters of Meta-ELM, M = 15-20 and Nh = 5-10. Also considering the performance metric, the Meta-ELM model provides the best results in all regions and the Levenberg–Marquardt algorithm -feed-forward neural network and adaptive neuro-fuzzy inference system -particle swarm optimization show competitive results for forecasting process. In addition, the Meta-ELM provides much better results in terms of elapsed time. Originality/value – The original contribution of the study is to investigate of determination Meta-ELM parameters based on forecasting process.en_US
dc.language.isoengen_US
dc.publisherEmerald Publishingen_US
dc.identifier.doi10.1108/COMPEL-07-2020-0246en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOptimal Designen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectForecastingen_US
dc.subjectLearning Algorithmen_US
dc.subjectMeta-ELMen_US
dc.subjectNeural Networksen_US
dc.subjectWind Energyen_US
dc.titleUsing optimal choice of parameters for meta-extreme learning machine method in wind energy applicationen_US
dc.typearticleen_US
dc.relation.ispartofCompel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.departmentRektörlük, Enerji Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.authorid0000-0002-4576-1941en_US
dc.authorid0000-0003-0569-098Xen_US
dc.authorid0000-0002-5364-6265en_US
dc.authorid0000-0003-2618-2861en_US
dc.identifier.volume40en_US
dc.identifier.issue3en_US
dc.identifier.startpage390en_US
dc.identifier.endpage401en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.relation.indexScopusen_US
dc.relation.indexWoSen_US
dc.relation.indexWoS - Science Citation Index Expandeden_US
dc.contributor.institutionauthorDokur, Emrah
dc.contributor.institutionauthorKarakuzu, Cihan
dc.contributor.institutionauthorYüzgeç, Uğur
dc.contributor.institutionauthorKurban, Mehmet
dc.description.other2WOS:000625288000001en_US
dc.description.wosqualityQ4en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record