$B-$Fractional Integrals on Variable Lebesgue Spaces
| dc.contributor.author | Kaya, Esra | |
| dc.date.accessioned | 2025-05-20T18:28:23Z | |
| dc.date.issued | 2024 | |
| dc.department | Bilecik Şeyh Edebali Üniversitesi | |
| dc.description.abstract | Here, the fractional integral operators which are generated by Laplace-Bessel differential operator will be examined. It will also be shown that $M^{\alpha}_{\nu},\, I^{\alpha}_{\nu}: L_{p(\cdot),\nu}(\mathbb{R}^{n}_{k,+})\rightarrow L_{q(\cdot),\nu}(\mathbb{R}^{n}_{k,+})$ are bounded, where $M^{\alpha}_{\nu}$ is $B-$fractional maximal operator, $I^{\alpha}_{\nu}$ is $B-$Riesz potential and $\dfrac{1}{p(\cdot)}-\dfrac{1}{q(\cdot)}=\dfrac{\alpha}{Q}$. | |
| dc.identifier.doi | 10.47000/tjmcs.1505489 | |
| dc.identifier.endpage | 345 | |
| dc.identifier.issn | 2148-1830 | |
| dc.identifier.issue | 2 | |
| dc.identifier.startpage | 333 | |
| dc.identifier.uri | https://doi.org/10.47000/tjmcs.1505489 | |
| dc.identifier.uri | https://hdl.handle.net/11552/4205 | |
| dc.identifier.volume | 16 | |
| dc.institutionauthor | Kaya, Esra | |
| dc.language.iso | en | |
| dc.publisher | Matematikçiler Dernegi | |
| dc.relation.ispartof | Turkish Journal of Mathematics and Computer Science | |
| dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_DergiPark_20250518 | |
| dc.subject | Fractional maximal operator | |
| dc.subject | generalized translation operator | |
| dc.subject | Riesz potential | |
| dc.subject | variable Lebesgue space | |
| dc.title | $B-$Fractional Integrals on Variable Lebesgue Spaces | |
| dc.type | Research Article |












