IMPROVED ANTLION OPTIMIZATION ALGORITHM FOR QUADRATIC ASSIGNMENT PROBLEM

dc.authoridKILIC, HAYDAR/0000-0002-2551-3772
dc.contributor.authorKilic, Haydar
dc.contributor.authorYuzgec, Ugur
dc.date.accessioned2025-05-20T18:54:07Z
dc.date.issued2021
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractThe Antlion Optimization (ALO) algorithm is a meta-heuristic optimization algorithm based on the hunting of ants by antlions. The basic inadequacy of this algorithm is that it has long run time because of the random walk model used for the ant's movement. We improved some mechanisms in ALO algorithm, such as ants' random walking, reproduction, sliding ants towards antlion, elitism, and selection procedure. This proposed algorithm is called Improved Antlion Optimization (IALO) algorithm. To show the performance of the proposed IALO algorithm, we used different measurement metrics, such as mean best, standard deviation, optimality, accuracy, CPU time, and number of function evaluations (NFE). The proposed IALO algorithm was tested for different benchmark test functions taken from the literature. There are no studies regarding time analysis of ALO algorithm found in the literature. This study firstly aims to demonstrate the success of the proposed IALO algorithm especially in runtime analysis. Secondly, the IALO algorithm was also applied to the Quadratic Assignment Problem (QAP) known as a difficult combinatorial optimization problem. In QAP tests, the performance of the IALO algorithm was compared with the performances of the classic ALO algorithm and 14 well-known and recent meta-heuristic algorithms. The results of the benchmark test functions show that IALO algorithm is able to provide very competitive results in terms of mean best/standard deviation, optimality, accuracy, CPU time and NFE mefrics. The CPU time results prove that IALO algorithm is faster than the classic ALO algorithm. As a result of the QAP tests, the proposed IALO algorithm has the best performance according to the mean cost, worst cost and standard deviation. The source codes of QAP with the proposed IALO algorithm are publicly available at https://github.com/uguryuzgec/QAP-with-IALO.
dc.identifier.doi10.22452/mjcs.vol34no1.3
dc.identifier.endpage60
dc.identifier.issn0127-9084
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85101559105
dc.identifier.scopusqualityQ3
dc.identifier.startpage34
dc.identifier.urihttps://doi.org/10.22452/mjcs.vol34no1.3
dc.identifier.urihttps://hdl.handle.net/11552/7224
dc.identifier.volume34
dc.identifier.wosWOS:000614619200002
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherUniv Malaya, Fac Computer Science & Information Tech
dc.relation.ispartofMalaysian Journal of Computer Science
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250518
dc.subjectOptimization
dc.subjectBenchmark
dc.subjectQuadratic Assignment Problem
dc.subjectAntlion
dc.titleIMPROVED ANTLION OPTIMIZATION ALGORITHM FOR QUADRATIC ASSIGNMENT PROBLEM
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Kılıç ve Yuzgec - 2021 - IMPROVED ANTLION OPTIMIZATION ALGORITHM FOR QUADRATIC ASSIGNMENT PROBLEM.pdf
Boyut:
2.3 MB
Biçim:
Adobe Portable Document Format