BERTRAND CURVES IN THREE DIMENSIONAL LIE GROUPS

dc.contributor.authorOkuyucu, O. Zeki
dc.contributor.authorGok, Ismail
dc.contributor.authorYayli, Yusuf
dc.contributor.authorEkmekci, Nejat
dc.date.accessioned2025-05-20T19:01:11Z
dc.date.issued2017
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractIn this paper, we give the definition of harmonic curvature function some special curves such as helix, slant curves, Mannheim curves and Bertrand curves. Then, we recall the characterizations of helices [7], slant curves (see [19]) and Mannheim curves (see [12]) in three dimensional Lie groups using their harmonic curvature function. Moreover, we define Bertrand curves in a three dimensional Lie group G with a bi-invariant metric and the main result in this paper is given as (Theorem 7): A curve alpha : I subset of R -> G with the Frenet apparatus {T, N, B, kappa, tau} is a Bertrand curve if and only if lambda kappa + mu kappa H = 1 where lambda, mu are constants and H is the harmonic curvature function of the curve alpha.
dc.identifier.endpage1010
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85045998986
dc.identifier.scopusqualityQ2
dc.identifier.startpage999
dc.identifier.urihttps://hdl.handle.net/11552/9033
dc.identifier.volume17
dc.identifier.wosWOS:000396217100025
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherUniv Miskolc Inst Math
dc.relation.ispartofMiskolc Mathematical Notes
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectBertrand curves
dc.subjectLie groups
dc.titleBERTRAND CURVES IN THREE DIMENSIONAL LIE GROUPS
dc.typeArticle

Dosyalar