An efficient computer application of the sinc-Galerkin approximation for nonlinear boundary value problems

dc.authoridSecer, Aydin/0000-0002-8372-2441
dc.authoridAkinlar, Mehmet Ali/0000-0002-7005-8633
dc.authoridkurulay, muhammet/0000-0002-9276-9989
dc.contributor.authorSecer, Aydin
dc.contributor.authorKurulay, Muhammet
dc.contributor.authorBayram, Mustafa
dc.contributor.authorAkinlar, Mehmet Ali
dc.date.accessioned2025-05-20T18:56:02Z
dc.date.issued2012
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractA powerful technique based on the sinc-Galerkin method is presented for obtaining numerical solutions of second-order nonlinear Dirichlet-type boundary value problems (BVPs). The method is based on approximating functions and their derivatives by using the Whittaker cardinal function. Without any numerical integration, the differential equation is reduced to a system of algebraic equations via new accurate explicit approximations of the inner products; therefore, the evaluation is based on solving a matrix system. The solution is obtained by constructing the nonlinear (or linear) matrix system using Maple and the accuracy is compared with the Newton method. The main aspect of the technique presented here is that the obtained solution is valid for various boundary conditions in both linear and nonlinear equations and it is not affected by any singularities that can occur in variable coefficients or a nonlinear part of the equation. This is a powerful side of the method when being compared to other models.
dc.identifier.doi10.1186/1687-2770-2012-117
dc.identifier.issn1687-2770
dc.identifier.scopus2-s2.0-84879729347
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1186/1687-2770-2012-117
dc.identifier.urihttps://hdl.handle.net/11552/7509
dc.identifier.wosWOS:000317468800011
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofBoundary Value Problems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250518
dc.subjectMaple
dc.subjectsinc-Galerkin approximation
dc.subjectsinc basis function
dc.subjectnonlinear matrix system
dc.subjectNewton method
dc.titleAn efficient computer application of the sinc-Galerkin approximation for nonlinear boundary value problems
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Yayıncı Kopyası_Makale.pdf
Boyut:
928.21 KB
Biçim:
Adobe Portable Document Format