Enhanced Lesion Classification Based on YOLO Architectures Using Thermal Breast Images on a Patient by Patient Basis

dc.authoridCEVIK, Kerim Kursat/0000-0002-2921-506X
dc.contributor.authorCevik, Kerim Kursat
dc.contributor.authorCivilibal, Soner
dc.contributor.authorBozkurt, Ahmet
dc.contributor.authorDandil, Emre
dc.date.accessioned2025-05-20T18:54:13Z
dc.date.issued2024
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractBreast cancer classification using deep learning architectures plays a crucial role in assisting clinicians with early-stage diagnosis. In this study, we present a comprehensive evaluation of YOLO architectures-YOLOv2, YOLOv3, YOLOv4, and YOLOv5-for the classification of breast lesions in thermal breast images. By employing these architectures, we enhanced the identification of relevant regions of interest (ROIs) for lesion contouring. The dataset for this research was sourced from a publicly available repository, and divided on a patient-bypatient basis. This patient-based split enhances the robustness and clinical relevance of the model's performance compared to prior studies that relied on random data partitioning. Experimental results demonstrate that YOLOv5, Atrained with the Stochastic Gradient Descent with Momentum (SGDM) optimizer, achieved superior performance, with 0.83, 0.66, 0.97 and 0.79 for the key metrics of accuracy, precision, recall and F1-score, respectively. These results underscore the model's potential for reliable breast lesion classification and emphasize the importance of robust dataset partitioning to enhance clinical applicability.
dc.description.sponsorshipNational Center for High Performance Computing of Turkiye (UHeM) [016482023]
dc.description.sponsorshipThe authors would like to thank the researchers of the publicly available dataset for providing the thermogram data. In addition, computing resources used in this work were provided by the National Center for High Performance Computing of Turkiye (UHeM) (Grant No.: 016482023) .
dc.identifier.doi10.18280/ts.410617
dc.identifier.endpage2999
dc.identifier.issn0765-0019
dc.identifier.issn1958-5608
dc.identifier.issue6
dc.identifier.scopusqualityN/A
dc.identifier.startpage2989
dc.identifier.urihttps://doi.org/10.18280/ts.410617
dc.identifier.urihttps://hdl.handle.net/11552/7292
dc.identifier.volume41
dc.identifier.wosWOS:001397054700017
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWoS
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherInt Information & Engineering Technology Assoc
dc.relation.ispartofTraitement Du Signal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectbreast lesions
dc.subjectthermal imaging
dc.subjectclassification
dc.subjectdeep learning
dc.subjectYOLO
dc.subjectarchitecture
dc.titleEnhanced Lesion Classification Based on YOLO Architectures Using Thermal Breast Images on a Patient by Patient Basis
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
ts_41.06_17.pdf
Boyut:
2.19 MB
Biçim:
Adobe Portable Document Format