Explainable artificial intelligence in the design of selective carbonic anhydrase I-II inhibitors via molecular fingerprinting

dc.authoridISIK, MESUT/0000-0002-4677-8104
dc.authoridKirboga, Kevser Kubra/0000-0002-2917-8860
dc.contributor.authorKirboga, Kevser Kubra
dc.contributor.authorIsik, Mesut
dc.date.accessioned2025-05-20T19:00:02Z
dc.date.issued2024
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractInhibiting the enzymes carbonic anhydrase I (CA I) and carbonic anhydrase II (CA II) presents a potential avenue for addressing nervous system ailments such as glaucoma and Alzheimer's disease. Our study explored harnessing explainable artificial intelligence (XAI) to unveil the molecular traits inherent in CA I and CA II inhibitors. The PubChem molecular fingerprints of these inhibitors, sourced from the ChEMBL database, were subjected to detailed XAI analysis. The study encompassed training 10 regression models using IC50 values, and their efficacy was gauged using metrics including R-2, RMSE, and time taken. The Decision Tree Regressor algorithm emerged as the optimal performer (R-2: 0.93, RMSE: 0.43, time-taken: 0.07). Furthermore, the PFI method unveiled key molecular features for CA I inhibitors, notably PubChemFP432 (C(=O)N) and PubChemFP6978 (C(=O)O). The SHAP analysis highlighted the significance of attributes like PubChemFP539 (C(=O)NCC), PubChemFP601 (C(=O)OCC), and PubChemFP432 (C(=O)N) in CA I inhibitiotable n. Likewise, features for CA II inhibitors encompassed PubChemFP528(C(=O)OCCN), PubChemFP791 (C(=O)OCCC), PubChemFP696 (C(=O)OCCCC), PubChemFP335 (C(=O)NCCN), PubChemFP580 (C(=O)NCCCN), and PubChemFP180 (C(=O)NCCC), identified through SHAP analysis. The sulfonamide group (S), aromatic ring (A), and hydrogen bonding group (H) exert a substantial impact on CA I and CA II enzyme activities and IC50 values through the XAI approach. These insights into the CA I and CA II inhibitors are poised to guide future drug discovery efforts, serving as a beacon for innovative therapeutic interventions.
dc.identifier.doi10.1002/jcc.27335
dc.identifier.endpage1539
dc.identifier.issn0192-8651
dc.identifier.issn1096-987X
dc.identifier.issue18
dc.identifier.pmid38491535
dc.identifier.scopus2-s2.0-85188419826
dc.identifier.scopusqualityQ1
dc.identifier.startpage1530
dc.identifier.urihttps://doi.org/10.1002/jcc.27335
dc.identifier.urihttps://hdl.handle.net/11552/8766
dc.identifier.volume45
dc.identifier.wosWOS:001185790300001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofJournal of Computational Chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectbioactivity
dc.subjectcarbonic anhydrase
dc.subjectcomputational drug discovery
dc.subjectexplainable artificial intelligence
dc.titleExplainable artificial intelligence in the design of selective carbonic anhydrase I-II inhibitors via molecular fingerprinting
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale.pdf
Boyut:
1.69 MB
Biçim:
Adobe Portable Document Format