Deriving private data in partitioned data-based privacy-preserving collaborative filtering systems

dc.contributor.authorOkkalioglu, Burcu Demirelli
dc.contributor.authorKoc, Mehmet
dc.contributor.authorPolat, Huseyin
dc.date.accessioned2025-05-20T18:55:42Z
dc.date.issued2017
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractCollaborative filtering algorithms need enough data to provide accurate and reliable predictions. Hence, two e-commerce sites holding insufficient data may want to provide predictions on their partitioned data with privacy. Different privacy-preserving collaborative filtering systems have been proposed for this purpose. Some attacks can be employed against such systems to derive confidential data. In this paper, attack scenarios are designed against horizontally and vertically partitioned data-based collaborative filtering with privacy schemes to show how much data can be derived. Also, how additional knowledge about the system helps data reconstruction is studied. Empirical outcomes on real data sets show that it is possible to derive high amount of private data in some cases. However, when there is no additional information and data is dense, data reconstruction success becomes very low.
dc.identifier.doi10.17341/gazimmfd.300594
dc.identifier.endpage64
dc.identifier.issn1300-1884
dc.identifier.issn1304-4915
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85016579149
dc.identifier.scopusqualityQ2
dc.identifier.startpage53
dc.identifier.urihttps://doi.org/10.17341/gazimmfd.300594
dc.identifier.urihttps://hdl.handle.net/11552/7329
dc.identifier.volume32
dc.identifier.wosWOS:000402575200006
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isotr
dc.publisherGazi Univ, Fac Engineering Architecture
dc.relation.ispartofJournal of The Faculty of Engineering and Architecture of Gazi University
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250518
dc.subjectPrivacy
dc.subjectdata reconstruction
dc.subjectpartitioned data
dc.subjectcollaborative filtering
dc.subjectattack
dc.titleDeriving private data in partitioned data-based privacy-preserving collaborative filtering systems
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Polat vd. - 2017 - BÖLÜNMÜŞ VERİ-TABANLI GİZLİLİĞİ KORUYAN ORTAK FİLTRELEME SİSTEMLERİNDE GİZLİ VERİNİN ELDE EDİLMESİ.pdf
Boyut:
583.72 KB
Biçim:
Adobe Portable Document Format