3, 3,5 and 2,6 Expanded Aza-BODIPYs Via Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions: Synthesis and Photophysical Properties

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer/Plenum Publishers

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Novel symmetrical aza-borondipyrromethene (aza-BODIPY) compounds bearing 4-methoxyphenyl, 4-methoxybiphenyl, 2,4-dimethoxybipheny, 4-bromophenyl and N,N-diphenyl-4-biphenylamine groups on the 3, 3,5 and 2,6 positions of aza-BODIPY core were synthesized via Suzuki-Miyaura coupling reactions while unsymmetrical analogues were obtained from the starting mono Br-substituted aza-BODIPY material which was obtained from nitrosolated pyrrole derivative. The characterizations were performed by means of H-1-NMR, C-13-NMR, FTIR and HRMS-TOF-ESI techniques. The spectral properties of the aza-BODIPY derivatives were investigated using absorption and fluorescence spectroscopy. The novel compounds with extended conjugation have broadband absorption in near infrared region and show significant shifts on their absorption and fluorescence spectra compared to unsubstituted analogues. The highest bathochromic shifts were observed pi-extended and strong electron donating groups at 3,5 positions of the aza-BODIPY scaffold. Depend on substitution positions of attached groups to the indacene core, the fluorescence quantum yields of chromophores were determined to be drastic changes. The singlet oxygen generation capability of the compounds were evaluated and 2,6-bromine substituted compounds AA1 and CC1 showed high singlet oxygen quantum yields (71% and 74%, respectively). Enhanced photophysical properties such as intense absorption, extended conjugation and singlet oxygen production make the investigated aza-BODIPYs promising candidates for photodynamic therapy applications and organic photovoltaic cells in NIR region.

Açıklama

Anahtar Kelimeler

Aza-BODIPY, Unsymmetrical aza-BODIPY, Azadipyrromethenes, Suzuki-Miyaura coupling, NIR region dyes

Kaynak

Journal of Fluorescence

WoS Q Değeri

Scopus Q Değeri

Cilt

31

Sayı

1

Künye

Onay

İnceleme

Ekleyen

Referans Veren