Short-term load forecasting without meteorological data using AI-based structures

dc.contributor.authorIsikli Esener, Idil
dc.contributor.authorYuksel, Tolga
dc.contributor.authorKurban, Mehmet
dc.date.accessioned2025-05-20T18:53:37Z
dc.date.issued2015
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractSTLF is used in making decisions about economical power generation capacity, fuel purchasing, safety assessment, and power system planning in order to have economical power conditions. In this study, Turkey's 24-hour-ahead load forecasting without meteorological data is studied. ANN, wavelet transform and ANN, wavelet transform and RBF NN, and EMD and RBF NN structures are used in STLF procedures. Local holidays' historical load data are changed into data with normal day characteristics, and the estimation results of these days are not included in error computation. To obtain more accurate results, a regulation on forecasted loads is proposed. Regulated and unregulated forecasting error percentages are computed as daily average MAPE and maximum daily MAPE, and compared between the proposed structures. A simulation is performed for the years 2009-2010 via the user interface created using MATLAB GUI.
dc.identifier.doi10.3906/elk-1209-28
dc.identifier.endpage380
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.issue2
dc.identifier.scopus2-s2.0-84922534665
dc.identifier.scopusqualityQ2
dc.identifier.startpage370
dc.identifier.trdizinid168756
dc.identifier.urihttps://doi.org/10.3906/elk-1209-28
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/168756
dc.identifier.urihttps://hdl.handle.net/11552/6944
dc.identifier.volume23
dc.identifier.wosWOS:000349678400004
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakTR-Dizin
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherTubitak Scientific & Technological Research Council Turkey
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250518
dc.subjectShort-term load forecasting
dc.subjectartificial neural networks
dc.subjectradial basis function neural networks
dc.subjectwavelet transform
dc.subjectempirical mode decomposition
dc.titleShort-term load forecasting without meteorological data using AI-based structures
dc.typeArticle

Dosyalar