Evaluation of EfficientNet models for COVID-19 detection using lung parenchyma

dc.authoridAnagun, Yildiray/0000-0002-7743-0709
dc.authoridKOCA, Nizameddin/0000-0003-1457-4366
dc.authoridisik, sahin/0000-0003-1768-7104
dc.authoridKURT, ZUHAL/0000-0003-1740-6982
dc.authoridkaya, zeynep/0000-0001-9831-6246
dc.contributor.authorKurt, Zuhal
dc.contributor.authorIsik, Sahin
dc.contributor.authorKaya, Zeynep
dc.contributor.authorAnagun, Yildiray
dc.contributor.authorKoca, Nizameddin
dc.contributor.authorCicek, Suemeyye
dc.date.accessioned2025-05-20T18:59:52Z
dc.date.issued2023
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractWhen the COVID-19 pandemic broke out in the beginning of 2020, it became crucial to enhance early diagnosis with efficient means to reduce dangers and future spread of the viruses as soon as possible. Finding effective treatments and lowering mortality rates is now more important than ever. Scanning with a computer tomography (CT) scanner is a helpful method for detecting COVID-19 in this regard. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19-positive and 86 COVID-19-negative patients taken at the Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies show that the modified EfficientNet-ap-nish method uses this dataset effectively for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a preprocessing stage. Then, performance pretrained models are analyzed using different CNN architectures and with our Nish activation function. The statistical rates are obtained by the various EfficientNet models and the highest detection score is obtained with the EfficientNet-B4-ap-nish version, which provides a 97.93% accuracy rate and a 97.33% F1-score. The implications of the proposed method are immense both for present-day applications and future developments.
dc.identifier.doi10.1007/s00521-023-08344-z
dc.identifier.endpage12132
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue16
dc.identifier.pmid36843903
dc.identifier.scopus2-s2.0-85148439982
dc.identifier.scopusqualityQ1
dc.identifier.startpage12121
dc.identifier.urihttps://doi.org/10.1007/s00521-023-08344-z
dc.identifier.urihttps://hdl.handle.net/11552/8669
dc.identifier.volume35
dc.identifier.wosWOS:000935466800001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherSpringer London Ltd
dc.relation.ispartofNeural Computing & Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250518
dc.subjectCOVID-19 detection
dc.subjectCT scan
dc.subjectLung parenchyma
dc.subjectDeep learning
dc.subjectEfficientNet
dc.subjectK-means
dc.titleEvaluation of EfficientNet models for COVID-19 detection using lung parenchyma
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale.pdf
Boyut:
1.41 MB
Biçim:
Adobe Portable Document Format