Uyku apnesi tanısı için bilgisayar destekli tespit sisteminin tasarımı ve gerçeklemesi

dc.authorid0000-0003-0751-6547
dc.contributor.advisorIşıklı Esener, İdil
dc.contributor.authorYaman, Betül Nurefşan
dc.date.accessioned2021-10-04T10:50:17Z
dc.date.available2021-10-04T10:50:17Z
dc.date.issued2021en_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Elektrik-Elektronik Mühendisliği
dc.description.abstractTez çalışmasında, uyku apnesi teşhisi gerçekleştirebilen bir bilgisayar destekli teşhis sistemi önerilmiş ve PhysioNet Apnea-ECG veri tabanı üzerinde doğrulanmıştır. Önerilen sistemin ön işleme aşamasında, veritabanında yer alan elektrokardiyogram sinyalleri z-skor normalizasyonuna tabi tutulmuş, bant geçiren filtreden geçirilmiş ve bir-dakikalık bölütlere ayrılmıştır. Sonrasında, öznitelik çıkarımı aşamasında, bir-dakikalık bölütler gerek uzamsal düzlemde gerekse frekans düzleminde yedi farklı öznitelik grubu ile betimlenmiştir. Ayrıca, her bir öznitelik grubuna temel bileşen analizi, ortak vektör yaklaşımı ve ayırt edici ortak vektör yaklaşımı yöntemleri uygulanarak öznitelik seçimi gerçekleştirilmiştir. Sınıflandırma aşamasında ise lojistik doğrusal sınıflandırıcı, doğrusal ayırtaç sınıflandırıcı, fisher doğrusal ayırıcı analizi, bayes sınıflandırıcı, k-en yakın komşu sınıflandırıcısı kullanılarak, 2- ve 3-sınıflı teşhis çalışmaları gerçekleştirilmiştir. Sonuç olarak, bir-dakikalık bölütlerin apneli/apnesiz olarak sınıflandırıldığı 2-sınıflı teşhis çalışmasında kalp atım hızı değişkenliği öznitelikleri kullanılarak maksimum %72,29, kalp atım hızı değişkenliği özniteliklerinin temel bileşen analizi yöntemi ile boyut indirgemesi yapıldıktan sonra %67,00 doğruluk sağlandığı tespit edilmiştir. Hasta/sınırda/sağlıklı olarak sınıflandırıldığı 3-sınıflı teşhis çalışmasında da kalp atım hızı değişkenliği öznitelikleri kullanılarak maksimum %68,67, hibrit özniteliklerinin temel bileşen analizi ile boyut indirgemesi yapıldıktan sonra %68,67 doğruluk sağlandığı tespit edilmiştir.en_US
dc.description.abstractIn the thesis study, a computer aided diagnostic system capable of diagnosing sleep apnea is proposed and validated on the PhysioNet Apnea-ECG database. In the preprocessing phase of the proposed system, electrocardiogram signals in the database is subjected to z-score normalization, bandpass filtered and divided into one-minute segments. Then, in the feature extraction stage, one-minute segments are described with seven different feature groups in both the spatial plane and the frequency plane. In addition, feature selection is performed by applying principal component analysis, common vector approach and distinguished common vector approach methods to each feature group. In the classification stage, 2- and 3-class diagnostic studies are performed using the logistic linear classifier, linear differential classifier, fisher linear differential analysis, bayes classifier, k-neighbor classifier. As a result, In the 2- class diagnostic study, it is determined that maximum 72.29% accuracy is achieved by using heart rate variability features, and 67.00% accuracy is achieved after size reduction of heart rate variability features by principal component analysis method. In the 3-class diagnostic study, in which the patient is classified as borderline/healthy, it is determined that the maximum accuracy is 68.67% using heart rate variability features, and 68.67% accuracy is achieved after size reduction with principal component analysis of hybrid features.en_US
dc.identifier.bseutezid10399144en_US
dc.identifier.citationYaman, B. N. (2021). Uyku apnesi tanısı için bilgisayar destekli tespit sisteminin tasarımı ve gerçeklemesi. [Yayımlanmamış yüksek lisans tezi]. Bilecik Şeyh Edebali Üniversitesi.en_US
dc.identifier.urihttps://hdl.handle.net/11552/2062
dc.identifier.yoktezid679194
dc.institutionauthorYaman, Betül Nurefşan
dc.language.isotr
dc.publisherBilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectUyku Apnesien_US
dc.subjectBilgisayar Destekli Teşhisen_US
dc.subject1-Boyutlu Yerel Konfigürasyon Örüntüsüen_US
dc.subjectÖznitelik Çıkarımıen_US
dc.subjectÖznitelik Seçimien_US
dc.subjectSleep Apneaen_US
dc.subjectComputer Aided Diagnosisen_US
dc.subject1-Dimensional Local Configuration Patternen_US
dc.subjectFeature Extractionen_US
dc.subjectFeature Selectionen_US
dc.titleUyku apnesi tanısı için bilgisayar destekli tespit sisteminin tasarımı ve gerçeklemesi
dc.title.alternativeDesing and Implementation of a Computer Aided Detection System for Diagnosis of Sleep Apnea
dc.typeMaster Thesis

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
10399144.pdf
Boyut:
1.94 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tez Dosyası

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: