Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

dc.contributor.authorTurhal, Umit Cigdem
dc.contributor.authorOnal, Yasemin
dc.contributor.authorTurhal, Kutalmis
dc.date.accessioned2025-05-20T18:53:52Z
dc.date.issued2025
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractThe reliability and efficiency of photovoltaic (PV) systems are essential for sustainable energy production, requiring accurate fault detection to minimize energy losses. This study proposes a hybrid model integrating Neighborhood Components Analysis (NCA) with a Convolutional Neural Network (CNN) to improve fault detection and diagnosis. Unlike Principal Component Analysis (PCA), which may compromise class relationships during feature extraction, NCA preserves these relationships, enhancing classification performance. The hybrid model combines NCA with CNN, a fundamental deep learning architecture, to enhance fault detection and diagnosis capabilities. The performance of the proposed NCA-CNN model was evaluated against other models. The experimental evaluation demonstrates that the NCA-CNN model outperforms existing methods, achieving 100% fault detection accuracy and 99% fault diagnosis accuracy. These findings underscore the model's potential in improving PV system reliability and efficiency.
dc.identifier.doi10.32604/cmes.2025.064269
dc.identifier.issn1526-1492
dc.identifier.issn1526-1506
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.32604/cmes.2025.064269
dc.identifier.urihttps://hdl.handle.net/11552/7087
dc.identifier.wosWOS:001466536600001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWoS
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherTech Science Press
dc.relation.ispartofCmes-Computer Modeling in Engineering & Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectArtificial intelligence
dc.subjectphotovoltaic energy systems
dc.subjectmachine learning
dc.subjectphotovoltaic fault detection and diagnosis
dc.subjectconvolutional neural networks (CNN)
dc.subjectneighbourhood component analysis (NCA)
dc.titleEnhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
TSP_CMES_64269.pdf
Boyut:
2.54 MB
Biçim:
Adobe Portable Document Format