Spectrochemical and explainable artificial intelligence approaches for molecular level identification of the status of critically ill patients with COVID-19

dc.authorid0009-0002-5840-5468
dc.authorid0000-0002-2917-8860
dc.authorid0000-0002-2429-5355
dc.authorid0000-0003-1435-0012
dc.authorid0000-0002-9309-803X
dc.authorid0000-0002-5293-6447
dc.authorwosidLCJ-2321-2024
dc.contributor.authorTokgöz, Görkem
dc.contributor.authorKırboğa, K. Kübra
dc.contributor.authorÖzel, Faik
dc.contributor.authorYücepur, Serkan
dc.contributor.authorArdahanlı, İsa
dc.contributor.authorGurbanov, Rafig
dc.date.accessioned2025-02-13T13:06:57Z
dc.date.available2025-02-13T13:06:57Z
dc.date.issued2024en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Biyomühendislik Ana Bilim Dalı
dc.departmentFakülteler, Mühendislik Fakültesi, Biyomühendislik Bölümü
dc.departmentFakülteler, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümü
dc.departmentFakülteler, Tıp Fakültesi, Dahili Tıp Bilimleri Bölümü
dc.departmentRektörlük, Merkezi Araştırma Laboratuvarı Uygulama ve Araştırma Merkezi
dc.description.abstractThis study explores the molecular alterations and disease progression in COVID-19 patients using ATR-FTIR spectroscopy combined with spectrochemical and explainable artificial intelligence (XAI) approaches. Blood serum samples from intubated patients (IC), those receiving hospital services (SC), and recovered patients (PC) were analyzed to identify potential spectrochemical serum biomarkers. Spectrochemical parameters such as lipid, protein, nucleic acid concentrations, and IgG glycosylation were quantified, revealing significant alterations indicative of disease severity. Notably, increased lipid content, altered protein concentrations, and enhanced protein phosphorylation were observed in IC patients compared to SC and PC groups. The serum AGR (Albumin/Globulin Ratio) index demonstrated a distinct shift among patient groups, suggesting its potential as a rapid biochemical marker for COVID-19 severity. Additionally, alterations in IgG glycosylation and glucose concentrations were associated with disease severity. Spectral analysis highlighted specific bands indicative of nucleic acid concentrations, with notable changes observed in IC patients. XAI techniques further elucidated the importance of various spectral features in predicting disease severity across patient categories, emphasizing the heterogeneity of COVID-19’s impact. Overall, this comprehensive approach provides insights into the molecular mechanisms underlying COVID-19 pathogenesis and offers a transparent and interpretable prediction algorithm to aid decision-making and patient management.en_US
dc.description.pubmedpublicationidPMID: 39106646en_US
dc.description.sponsorshipBilecik Seyh Edebali University Scientific Research Project (BAP) - 2023-01.BSEÜ.25-01.en_US
dc.identifier.citationTokgoz, G., Kirboga, K. K., Ozel, F., Yucepur, S., Ardahanli, I., & Gurbanov, R. (2024). Spectrochemical and explainable artificial intelligence approaches for molecular level identification of the status of critically ill patients with COVID-19. Talanta, 279, 126652.en_US
dc.identifier.doi10.1016/j.talanta.2024.126652
dc.identifier.endpage13en_US
dc.identifier.issue126652en_US
dc.identifier.pmid39106646
dc.identifier.scopus2-s2.0-85200550532
dc.identifier.scopusOldid1-s2.0-S0039914024010312
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1016/j.talanta.2024.126652
dc.identifier.urihttps://hdl.handle.net/11552/3809
dc.identifier.volume279en_US
dc.identifier.wosWOS:001289301000001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.institutionauthorTokgöz, Görkem
dc.institutionauthorKırboğa, K. Kübra
dc.institutionauthorÖzel, Faik
dc.institutionauthorYücepur, Serkan
dc.institutionauthorArdahanlı, İsa
dc.institutionauthorGurbanov, Rafig
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.bapinfo:eu-repo/grantAgreement/BAP/BŞEÜ/2023-01.BŞEÜ.25-01
dc.relation.ispartofTalanta
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCOVID-19en_US
dc.subjectFTIRen_US
dc.subjectBiomarkeren_US
dc.subjectExplainable Artificial Intelligenceen_US
dc.subjectShapley Explanationsen_US
dc.titleSpectrochemical and explainable artificial intelligence approaches for molecular level identification of the status of critically ill patients with COVID-19
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
GT article.pdf
Boyut:
6.26 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: