Artificial Neural Network-Based Classification System for Lung Nodules on Computed Tomography Scans

dc.authoridDandil, Emre/0000-0001-6559-1399
dc.authoridKurt, Ozlem Kar/0000-0002-4641-2866
dc.authoridCanan, Arzu/0000-0002-3303-8318
dc.contributor.authorDandil, Emre
dc.contributor.authorCakiroglu, Murat
dc.contributor.authorEksi, Ziya
dc.contributor.authorOzkan, Murat
dc.contributor.authorKurt, Ozlem Kar
dc.contributor.authorCanan, Arzu
dc.date.accessioned2025-05-20T19:01:18Z
dc.date.issued2014
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description6th International Conference on Soft Computing and Pattern Recognition (SoCPaR) -- AUG 11-14, 2014 -- Tunis, TUNISIA
dc.description.abstractLung cancer is the most common type of cancer among various cancers with the highest mortality rate. The fact that nodules that form on the lungs are in different shapes such as round or spiral in some cases makes their detection difficult. Early diagnosis facilitates identification of treatment phases and increases success rates in treatment. In this study, a holistic Computer Aided Diagnosis (CAD) system has been developed by using Computed-Tomography (CT) images to ensure early diagnosis of lung cancer and differentiation between benign and malignant tumors. The designed CAD system provides segmentation of nodules on the lobes with neural networks model of Self-Organizing Maps (SOM) and ensures classification between benign and malignant nodules with the help of ANN (Artificial Neural Network). Performance values of 90.63% accuracy, 92.30% sensitivity and 89.47% specificity were acquired in the CAD system which utilized a total of 128 CT images obtained from 47 patients.
dc.description.sponsorshipMIR Labs,IEEE,Regim Lab,IEEE Syst Man & Cybernet Soc, Tunisia Chapter,IEEE Tunisia Sect,IEEE Computat Intellignece Soc,Sustainable Innovat Tunisia,IEEE Sfax Subsect,Tunisair Offi Carrier
dc.identifier.endpage386
dc.identifier.isbn978-1-4799-5934-1
dc.identifier.scopus2-s2.0-84922785732
dc.identifier.scopusqualityN/A
dc.identifier.startpage382
dc.identifier.urihttps://hdl.handle.net/11552/9093
dc.identifier.wosWOS:000380429900066
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Conference Proceedings Citation Index-Science
dc.language.isoen
dc.publisherIeee
dc.relation.ispartof2014 6th International Conference of Soft Computing and Pattern Recognition (Socpar)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectlung cancer
dc.subjectlung nodule
dc.subjectCAD
dc.subjectCT images
dc.subjectANN classification
dc.titleArtificial Neural Network-Based Classification System for Lung Nodules on Computed Tomography Scans
dc.typeConference Object

Dosyalar