Efficient solutions of systems of fractional PDEs by the differential transform method

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper we obtain approximate analytical solutions of systems of nonlinear fractional partial differential equations (FPDEs) by using the two-dimensional differential transform method (DTM). DTM is a numerical solution technique that is based on the Taylor series expansion which constructs an analytical solution in the form of a polynomial. The traditional higher order Taylor series method requires symbolic computation. However, DTM obtains a polynomial series solution by means of an iterative procedure. The fractional derivatives are described in the Caputo fractional derivative sense. The solutions are obtained in the form of rapidly convergent infinite series with easily computable terms. DTM is compared with some other numerical methods. Computational results reveal that DTM is a highly effective scheme for obtaining approximate analytical solutions of systems of linear and nonlinear FPDEs and offers significant advantages over other numerical methods in terms of its straightforward applicability, computational efficiency, and accuracy.

Açıklama

Anahtar Kelimeler

Fractional Differential Equation, Caputo Fractional Derivative, Differential Transform Method

Kaynak

Advances in Difference Equations

WoS Q Değeri

Scopus Q Değeri

Cilt

1

Sayı

Künye

Secer, A., Akinlar, M. A., & Cevikel, A. (2012). Efficient solutions of systems of fractional PDEs by the differential transform method. Advances in Difference Equations, 2012(1), 1-7.

Onay

İnceleme

Ekleyen

Referans Veren