On the Diophantine equation x2 - kxy plus y2-2n=0
| dc.contributor.author | Keskin, Refik | |
| dc.contributor.author | Siar, Zafer | |
| dc.contributor.author | Karaatli, Olcay | |
| dc.date.accessioned | 2025-05-20T18:59:49Z | |
| dc.date.issued | 2013 | |
| dc.department | Bilecik Şeyh Edebali Üniversitesi | |
| dc.description.abstract | In this study, we determine when the Diophantine equation x (2)-kxy+y (2)-2 (n) = 0 has an infinite number of positive integer solutions x and y for 0 a (c) 1/2 n a (c) 1/2 10. Moreover, we give all positive integer solutions of the same equation for 0 a (c) 1/2 n a (c) 1/2 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x (2) - kxy + y (2) - 2 (n) = 0. | |
| dc.identifier.doi | 10.1007/s10587-013-0052-y | |
| dc.identifier.endpage | 797 | |
| dc.identifier.issn | 0011-4642 | |
| dc.identifier.issn | 1572-9141 | |
| dc.identifier.issue | 3 | |
| dc.identifier.scopus | 2-s2.0-84887447563 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 783 | |
| dc.identifier.uri | https://doi.org/10.1007/s10587-013-0052-y | |
| dc.identifier.uri | https://hdl.handle.net/11552/8635 | |
| dc.identifier.volume | 63 | |
| dc.identifier.wos | WOS:000326895800013 | |
| dc.identifier.wosquality | Q4 | |
| dc.indekslendigikaynak | WoS | |
| dc.indekslendigikaynak | Scopus | |
| dc.indekslendigikaynak | WoS - Science Citation Index Expanded | |
| dc.language.iso | en | |
| dc.publisher | Springer Heidelberg | |
| dc.relation.ispartof | Czechoslovak Mathematical Journal | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_WOS_20250518 | |
| dc.subject | Diophantine equation | |
| dc.subject | Pell equation | |
| dc.subject | generalized Fibonacci number | |
| dc.subject | generalized Lucas number | |
| dc.title | On the Diophantine equation x2 - kxy plus y2-2n=0 | |
| dc.type | Article |












