Novel repulsive magnetic bearing flywheel system with composite adaptive control

dc.authoridBasaran, Sinan/0000-0002-3783-2260
dc.authoridSivrioglu, Selim/0000-0003-4976-459X
dc.contributor.authorBasaran, Sinan
dc.contributor.authorSivrioglu, Selim
dc.date.accessioned2025-05-20T18:57:47Z
dc.date.issued2019
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractHere, a novel flywheel structure is proposed with passive permanent magnet (PM) bearings in the radial and axial directions and an active magnetic bearing (AMB) in the axial direction. In the proposed structure, passive magnetic bearings do not provide a stable magnetic levitation in all directions, but it is possible to maintain the dynamic stability of the flywheel by using AMB in the axial direction. In the proposed bearing structure, radial repulsive magnetic bearings (RMBs) reduce the power consumption with less complexity in the bearing structure but impose disturbance forces that deteriorate the stability of the actively controlled flywheel system. A complete model of the flywheel system is derived and transformed for a control design. A Lyapunov-based composite adaptive feedback control is designed for maintaining the stability under disturbances and a close convergence to the desired trajectory with fast parameter estimation. The performance of the composite adaptive control was experimentally verified for different cases using the RMB flywheel system. Additionally, a PID control was experimentally verified to demonstrate the usefulness of parameter estimation.
dc.description.sponsorshipScientific and Technological Research Council of Turkey [214M284]
dc.description.sponsorshipThis work was supported by The Scientific and Technological Research Council of Turkey through grant no 214M284 under the research projects funding program.
dc.identifier.doi10.1049/iet-epa.2018.5312
dc.identifier.endpage685
dc.identifier.issn1751-8660
dc.identifier.issn1751-8679
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85065967627
dc.identifier.scopusqualityQ2
dc.identifier.startpage676
dc.identifier.urihttps://doi.org/10.1049/iet-epa.2018.5312
dc.identifier.urihttps://hdl.handle.net/11552/7935
dc.identifier.volume13
dc.identifier.wosWOS:000468312600012
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherInst Engineering Technology-Iet
dc.relation.ispartofIet Electric Power Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectadaptive control
dc.subjectmagnetic bearings
dc.subjectmachine bearings
dc.subjectthree-term control
dc.subjectparameter estimation
dc.subjectLyapunov methods
dc.subjectstability
dc.subjectpermanent magnets
dc.subjectfeedback
dc.subjectmagnetic levitation
dc.subjectflywheels
dc.subjectcontrol system synthesis
dc.subjecttrajectory control
dc.subjectmagnetic bearing flywheel system
dc.subjectcomposite adaptive control
dc.subjectflywheel structure
dc.subjectpassive permanent magnet bearings
dc.subjectradial directions
dc.subjectaxial directions
dc.subjectactive magnetic bearing
dc.subjectAMB
dc.subjectdynamic stability
dc.subjectbearing structure
dc.subjectradial repulsive magnetic bearings
dc.subjectRMB flywheel system
dc.subjectPID control
dc.subjectmagnetic levitation
dc.subjectLyapunov-based composite adaptive feedback control design
dc.subjectparameter estimation
dc.titleNovel repulsive magnetic bearing flywheel system with composite adaptive control
dc.typeArticle

Dosyalar