ALPHAFOLD: DERİN ÖĞRENME VE SİNİR AĞLARI YOLUYLA PROTEİN KATLAMASINDA DEVRİM YARATMAK

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

AlphaFold, bir protein dizisinin üç boyutlu yapısını tahmin etmek için derin sinir ağlarını ve gelişmiş makine öğrenimi tekniklerini kullanan, DeepMind ekibi tarafından geliştirilmiş bir protein katlama tahmin aracıdır. Protein katlanmasının tahmini, hesaplamalı biyolojide uzun süredir devam eden bir sorun olmuştur ve doğru protein yapısı tahmin yöntemlerinin geliştirilmesi, bilim camiasının büyük ilgisini çekmiştir. AlphaFold, önce bir proteinin yerel yapısını tahmin ettiği ve ardından genel yapıyı bir araya getirdiği iki aşamalı bir yaklaşım kullanır. AlphaFold, iki yılda bir yapılan CASP (Yapı Tahmininin Kritik Değerlendirmesi) deneylerinde diğer son teknoloji yöntemleri geride bırakarak çok çeşitli proteinlerin yapısını tahmin etmede kayda değer bir başarı elde etmiştir. AlphaFold'un tahminlerinin doğruluğu, protein işlevini ve hastalık mekanizmalarını, ilaç keşfini ve sentetik biyolojiyi anlamak için önemli etkilere sahiptir. Bu derlemede, AlphaFold'un geliştirilmesine, temel metodolojisine ve CASP deneylerindeki performansına genel bir bakış sunulmaktadır. Ek olarak, AlphaFold'un protein mühendisliği, ilaç keşfi ve yapısal biyolojideki potansiyel uygulamaları da tartışılmaktadır.

Açıklama

Anahtar Kelimeler

Mikroskopi, Biyoloji, Nanobilim ve Nanoteknoloji, Genetik ve Kalıtım, Biyokimya ve Moleküler Biyoloji, Hücre Biyolojisi, Bilgisayar Bilimleri, Teori ve Metotlar, Bilgisayar Bilimleri, Yapay Zeka

Kaynak

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

22

Sayı

44

Künye

Onay

İnceleme

Ekleyen

Referans Veren