Tribo-material based on a UHMWPE/RGOC biocomposite for using in artificial joints

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Reduced graphene oxide (RGOC) filler that was green synthesized by vitamin C had been included in the ultrahigh molecular weight polyethylene (UHMWPE) matrix to produce biocomposite possessing improved properties especially against wear. The biocomposites filled with different loading (0.1, 0.3, 1.0, and 2.0 wt%) of RGOC was produced by a method of liquid phase ultrasonic mixing and then hot press molding. The structural analysis results of biocomposites showed that RGOC well-dispersed in polymer matrix and confirmed that there was interaction between the RGOC-UHMWPE. The biocomposite containing 2.0 wt% RGOC (UHMWPE/RGOC-2) gave the maximum microhardness and the value increased by 22. 5% compared with unfilled polymer. At the same RGOC content, the biocomposite had the highest thermal stability with residue content at 2.42%. The wear and friction behavior of biocomposites were carried out in a reciprocating friction testing machine under distilled water lubricating conditions. The UHMWPE/RGOC-2 biocomposite had the lowest friction coefficient value (0.034) and the wear rate of the biocomposite decreased by 44%, compared with that of unfilled UHMWPE. Furthermore, fatigue wear tracks were significantly reduced. This study suggests the use of this composite that had excellent tribological behavior as biomaterial instead of UHMWPE.

Açıklama

Anahtar Kelimeler

biomaterials, graphene and fullerenes, mechanical properties, nanotubes, structure‐ property relationships, thermogravimetric analysis

Kaynak

Journal of Applied Polymer Science

WoS Q Değeri

Scopus Q Değeri

Cilt

138

Sayı

31

Künye

Onay

İnceleme

Ekleyen

Referans Veren