On the Lucas Sequence Equations V-n = kV(m) and U-n = kU(m)

dc.authorid0000-0002-6473-4754
dc.authorscopusid55922763000
dc.authorwosidK-4831-2019
dc.contributor.authorKeskin, Refik
dc.contributor.authorŞiar, Zafer
dc.date.accessioned2022-03-07T13:37:58Z
dc.date.available2022-03-07T13:37:58Z
dc.date.issued2013en_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü
dc.description.abstractLet P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U0=0, U1=1 and Un+1=PUn-QUn-1 for n≥1, and V0=2, V1=P and Vn+1=PVn-QVn-1 for n≥1, respectively. In this paper, we assume that P≥1, Q is odd, (P,Q)=1, Vm≠1, and Vr≠1. We show that there is no integer xsuch that Vn=VrVmx2 when m≥1 and ris an even integer. Also we completely solve the equation Vn=VmVrx2 for m≥1 and r≥1 when Q≡7(mod8) and x is an even integer. Then we show that when P≡3(mod4) and Q≡1(mod4), the equation Vn=VmVrx2 has no solutions for m≥1 and r≥1. Moreover, we show that when P>1 and Q=±1, there is no generalized Lucas number Vn such that Vn=VmVr for m>1 and r>1. Lastly, we show that there is no generalized Fibonacci number Un such that Un=UmUrfor Q=±1 and 1<r<m.en_US
dc.identifier.citationKeskin, R., & Şiar, Z. (2012). On the lucas sequence equations Vn=kVm and Un=kUm. Colloquium Mathematicum, 130(1), 27-38. doi:10.4064/cm130-1-3en_US
dc.identifier.doi10.4064/cm130-1-3
dc.identifier.endpage38en_US
dc.identifier.issn1730-6302
dc.identifier.issn0010-1354
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84875349168
dc.identifier.scopusqualityQ3
dc.identifier.startpage27en_US
dc.identifier.urihttps://doi.org/10.4064/cm130-1-3
dc.identifier.urihttps://hdl.handle.net/11552/2368
dc.identifier.volume130en_US
dc.identifier.wosWOS:000316775100003
dc.identifier.wosqualityQ3
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.institutionauthorKeskin, Refik
dc.language.isoen
dc.publisherInstitute of Mathematics, Polish Academy of Sciencesen_US
dc.relation.ispartofColloquium Mathematicum
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLucas Sequenceen_US
dc.subjectCongruenceen_US
dc.titleOn the Lucas Sequence Equations V-n = kV(m) and U-n = kU(m)
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
On-the-Lucas-sequence-equations-VsubnsubkVsubmsub-and-UsubnsubkUsubmsubColloquium-Mathematicum.pdf
Boyut:
299.16 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Makale Dosyası

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: