On the Lucas Sequence Equations V-n = kV(m) and U-n = kU(m)
dc.authorid | 0000-0002-6473-4754 | |
dc.authorscopusid | 55922763000 | |
dc.authorwosid | K-4831-2019 | |
dc.contributor.author | Keskin, Refik | |
dc.contributor.author | Şiar, Zafer | |
dc.date.accessioned | 2022-03-07T13:37:58Z | |
dc.date.available | 2022-03-07T13:37:58Z | |
dc.date.issued | 2013 | en_US |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | |
dc.description.abstract | Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U0=0, U1=1 and Un+1=PUn-QUn-1 for n≥1, and V0=2, V1=P and Vn+1=PVn-QVn-1 for n≥1, respectively. In this paper, we assume that P≥1, Q is odd, (P,Q)=1, Vm≠1, and Vr≠1. We show that there is no integer xsuch that Vn=VrVmx2 when m≥1 and ris an even integer. Also we completely solve the equation Vn=VmVrx2 for m≥1 and r≥1 when Q≡7(mod8) and x is an even integer. Then we show that when P≡3(mod4) and Q≡1(mod4), the equation Vn=VmVrx2 has no solutions for m≥1 and r≥1. Moreover, we show that when P>1 and Q=±1, there is no generalized Lucas number Vn such that Vn=VmVr for m>1 and r>1. Lastly, we show that there is no generalized Fibonacci number Un such that Un=UmUrfor Q=±1 and 1<r<m. | en_US |
dc.identifier.citation | Keskin, R., & Şiar, Z. (2012). On the lucas sequence equations Vn=kVm and Un=kUm. Colloquium Mathematicum, 130(1), 27-38. doi:10.4064/cm130-1-3 | en_US |
dc.identifier.doi | 10.4064/cm130-1-3 | |
dc.identifier.endpage | 38 | en_US |
dc.identifier.issn | 1730-6302 | |
dc.identifier.issn | 0010-1354 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-84875349168 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 27 | en_US |
dc.identifier.uri | https://doi.org/10.4064/cm130-1-3 | |
dc.identifier.uri | https://hdl.handle.net/11552/2368 | |
dc.identifier.volume | 130 | en_US |
dc.identifier.wos | WOS:000316775100003 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | WoS | |
dc.indekslendigikaynak | WoS - Science Citation Index Expanded | |
dc.institutionauthor | Keskin, Refik | |
dc.language.iso | en | |
dc.publisher | Institute of Mathematics, Polish Academy of Sciences | en_US |
dc.relation.ispartof | Colloquium Mathematicum | |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Lucas Sequence | en_US |
dc.subject | Congruence | en_US |
dc.title | On the Lucas Sequence Equations V-n = kV(m) and U-n = kU(m) | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- On-the-Lucas-sequence-equations-VsubnsubkVsubmsub-and-UsubnsubkUsubmsubColloquium-Mathematicum.pdf
- Boyut:
- 299.16 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Yayıncı Kopyası_Makale Dosyası
Lisans paketi
1 - 1 / 1
Yükleniyor...
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: