Sezgisel arama algoritma tabanlı bulanık sistem optimizasyonu

dc.contributor.advisorKarakuzu, Cihan
dc.contributor.authorYıldırım, Özlem
dc.date.accessioned2019-05-10T11:07:33Z
dc.date.available2019-05-10T11:07:33Z
dc.date.issued2012
dc.date.submitted2012-12-10
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı
dc.description.abstractABC algoritması bal arıların doğadaki yiyecek kaynaklarını bulma ve nektar toplama davranış ilkelerine dayalı güncel bir sezgisel optimizasyon algoritmasıdır. Bu çalışmada, doğrusal olmayan dinamik sistemlerin ANFIS (Adaptive Neuro-Fuzzy Inference System) bulanık çıkarım modeli kullanılarak modellenmesi problemi üzerinde Yapay Arı Kolonisi (Artificial Bee Colony, ABC) algoritmasının optimizasyon başarımı incelenmiştir. İnceleme için literatürden seçilen beş denektaşı kullanılmıştır. Her bir denektaşı problem parametreleri ABC ile ayarlanan ANFIS ile modellenmiştir. Her bir denektaşı için ABC ile elde edilen sonuçlar popüler ve sıklıkla kullanılan PSO ve DE’nin sonuçlarıyla kıyaslamalı olarak irdelenmiştir. Çalışma çerçevesinde elde edilen istatistiki verilere göre, ABC algoritmasının DE’ye çok yakın başarım gösterdiği belirlenmiştir. Ancak bir nesil başına koşma zamanı kategorisinde ABC’nin başarımı en yakın rakibi olan DE’ye göre iki kat daha hızlı olduğu sonucuna varılmıştır. Bu sonucu dayalı olarak ABC algoritmasının gerçek zaman gömülü sistem uygulamalarında işletiminin diğerlerine nazaran daha verimli olacağı değerlendirilmiştir.en_US
dc.description.abstractABC algorithm is an up-to-date heuristic optimization method based on principles of honey bees behaviors in finding/gathering nectar from food sources in the nature. In this study, performance of the ABC algorithm is investigated on the problem of nonlinear dynamic systems modeling/ identification using ANFIS (Adaptive Neuro- Fuzzy Inference Systems) fuzzy inference model. Fort this investigation, five benchmark problems selected from the literature have been used. Each benchmark problem is identified /modeled with ANFIS which of parameters tuned by ABC. Obtained results for each benchmark have been comparatively examined with the results of PSO and DE popular and commonly used algorithms. According to the obtained results in this study, it is determined that performance of ABC algorithm is very close to performance of DE algorithm. However, it is concluded that performance of ABC in terms of run time per generation was two times better according to that of DE. Based on this conclusion, it is evaluated that operating of ABC algorithm in the application of real time embedded systems would be more efficient.en_US
dc.identifier.bseutezid452788en_US
dc.identifier.citationYıldırım, Ö. (2014). Sezgisel arama algoritma tabanlı bulanık sistem optimizasyonu. [Yayımlanmamış yüksek lisans tezi]. Bilecik Şeyh Edebali Üniversitesi.en_US
dc.identifier.urihttps://hdl.handle.net/11552/127
dc.identifier.yoktezid334819
dc.institutionauthorYıldırım, Özlemen_US
dc.language.isotr
dc.publisherBilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectYapay Arı Kolonisi Algoritmasıen_US
dc.subjectANFISen_US
dc.subjectBulanık Modellemeen_US
dc.subjectDinamik Sistemen_US
dc.subjectArtificial Bee Colonyen_US
dc.subjectANFISen_US
dc.subjectFuzzy Modelingen_US
dc.subjectDynamic Systemen_US
dc.titleSezgisel arama algoritma tabanlı bulanık sistem optimizasyonu
dc.title.alternativeFuzzy system optimization based on heuristic search algorithm
dc.typeMaster Thesis

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
452788.pdf
Boyut:
2.14 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tez Dosyası

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: