Application of Linear Regression Classification to Low-Dimensional Datasets

dc.authorid0000-0003-2919-6011
dc.contributor.authorKoç, Mehmet
dc.date.accessioned2021-12-22T13:51:31Z
dc.date.available2021-12-22T13:51:31Z
dc.date.issued2014en_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
dc.description.abstractThe Traditional Linear Regression Classification (LRC) method fails when the number of data in thetraining set is greater than their dimensions. In this work, we proposed a new implementation of LRC toovercome this problem in the pattern recognition. The new form of LRC works even in the case of havinglow-dimensional excessive number of data. In order to explain the new form of LRC, the relation betweenthe predictor and the correlation matrix of a class is shownfirst. Then for the derivation of LRC, the nullspace of the correlation matrix is generated by using the eigenvectors corresponding to the smallesteigenvalues. These eigenvectors are used to calculate the projection matrix in LRC. Also the equivalenceof LRC and the method called Class-Featuring Information Compression (CLAFIC) is shown theoretically.TI Digit database and Multiple Feature dataset are used to illustrate the use of proposed improvement onLRC and CLAFICen_US
dc.identifier.citationKoç, M., & Barkana, A. (2014). Application of linear regression classification to low-dimensional datasets. Neurocomputing, 131, 331-335.en_US
dc.identifier.doi10.1016/j.neucom.2013.10.009
dc.identifier.endpage335en_US
dc.identifier.issn0925-2312
dc.identifier.issn1872-8286
dc.identifier.scopus2-s2.0-84894083229
dc.identifier.scopusqualityQ1
dc.identifier.startpage331en_US
dc.identifier.urihttps://doi.org/10.1016/j.neucom.2013.10.009
dc.identifier.urihttps://hdl.handle.net/11552/2280
dc.identifier.volume131en_US
dc.identifier.wosWOS:000332805700034
dc.identifier.wosqualityQ2
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.institutionauthorKoç, Mehmet
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.ispartofNeurocomputing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCorrelation Matrixen_US
dc.subjectSubspace Methodsen_US
dc.subjectLinear Regression Classificationen_US
dc.subjectClass-Featuring Information Compressioen_US
dc.titleApplication of Linear Regression Classification to Low-Dimensional Datasets
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1-s2.0-S0925231213009594-main.pdf
Boyut:
450.76 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Makale Dosyası

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: