Akıllı sistemler kullanılarak güç sistemlerinde yük tahmini analizi ve uygulaması

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Elektrik enerji sistem planlamasının ilk adımı olan yük tahmini, elektrik enerjisinin ekonomik üretim ve dağıtımının gerçekleştirilebilmesi, sistem işletme koşullarının iyileştirilebilmesi, sistem kontrolünün daha verimli sağlanabilmesi ve elektrik enerji fiyatlandırması konularında büyük önem taşımaktadır. Kısa dönem yük tahmini ekonomik işletme koşullarının sağlanmasına olanak tanımaktadır. Bu çalışmada, sıcaklık verisi kullanmadan Türkiye geneli için 24 saatlik yük tahmini amaçlanmıştır. Bu amaçla, Yapay Sinir Ağları (YSA), Dalgacık Dönüşümü (DD) ve YSA, DD ve Radyal Tabanlı Fonksiyon Sinir Ağları (RTFSA), Görgül Kip Ayrışımı (GKA) ve RTFSA olmak üzere dört yapı oluşturulmuştur. Yerel tatil günlerinin tahmindeki bozucu etkisini kaldırmak için bu günlerin verileri değiştirilerek normal gün karakteristiğine getirilmiş ve bu günlere ait tahmin sonuçları hata hesabına katılmamıştır. Daha doğru sonuçlar elde edebilmek adına regüleli yük tahmini önerilmiştir. Regülesiz ve regüleli tahmin hata yüzdeleri, ortalama günlük Ortalama Mutlak Yüzdelik Hata (MAPE), maksimum günlük MAPE olarak hesaplanmıs ve dört yapı için hata karşılaştırılması yapılmıştır. Simülasyon çalışması, MATLAB GUI kullanılarak hazırlanan kullanıcı ara yüzü ile 2009-2010 yılları için gerçekleştirilmiştir.

Load forecasting, the first step of power system planning, is of great importance in economic electric power generation and distribution, improvement of system operating conditions, effective system control and energy pricing. Short-term load forecasting enables the provision of economic operation conditions. In this study, Turkey’s 24-hour-ahead load forecasting without temperature data is aimed. For this purpose, four structures, Artificial Neural Networks (ANN), Wavelet Transform (WT) and ANN, WT and Radial Basis Function Neural Network (RBF NN), Empirical Mode Decomposition (EMD) and RBF NN are constructed. Local holidays’ load data is replaced with normal day’s characteristics to remove the disturbing effects of those days on estimation, and estimation results of these days are not included in error computation. To have more accurate forecast, regulated load forecasting is proposed. Unregulated and regulated forecast error percentages are computed as average Daily Mean Absolute Percentage Error (MAPE) and maximum MAPE. All MAPE values are compared between the proposed structures. Simulation is performed for years 2009- 2010 via the user interface created using MATLAB GUI.

Açıklama

Anahtar Kelimeler

Kısa Dönem Yük Tahmini, Yapay Sinir Ağları, Radyal Tabanlı Fonksiyon Sinir Ağları, Görgül Kip Ayrışımı, Short-Term Load Forecasting, Artificial Neural Networks, Radial Basis Function Neural Networks, Wavelet Transform, Empirical Mode Decomposition

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Esener, İ. I. (2012). Akıllı sistemler kullanılarak güç sistemlerinde yük tahmini analizi ve uygulaması. [Yayımlanmamış yüksek lisans tezi]. Bilecik Şeyh Edebali Üniversitesi.

Onay

İnceleme

Ekleyen

Referans Veren