Prediction of Photovoltaic Panel Power Output using Artificial Neural Networks Learned by Heuristic Algorithms: A Comparative Study

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The prediction of power outputs generated from photovoltaic (PV) systems at different times is necessary for reliable and economical use of solar panels. The prediction of the power output is also very important in terms of factors such as installation of solar panels, guidance of electricity companies, energy management and distribution. In this study, we propose an Artificial Neural Network (ANN) model learned by heuristic algorithms to predict the power outputs obtained from PV panels monthly. It has been seen that ANN trained by Particle Swarm Optimization (PSO) are more successful than methods trained by the Back-Propagation(BP) and Clonal Selection Algorithm (CSA) for prediction of the power outputs obtained from PV panels placed at six different tilt angles.

Açıklama

2017 International Conference on Computer Science and Engineering (UBMK) -- OCT 05-08, 2017 -- Antalya, TURKEY

Anahtar Kelimeler

Photovoltaic panel, power prediction, ANN, back-propagation, PSO, clonal selection algorithm

Kaynak

2017 International Conference on Computer Science and Engineering (Ubmk)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Onay

İnceleme

Ekleyen

Referans Veren