Automatic Segmentation of Spinal Cord Gray Matter from MR Images using a U-Net Architecture

dc.authorid0000-0002-7939-2128
dc.authorid0000-0001-6559-1399
dc.authorscopusid57205612847
dc.authorscopusid55293427800
dc.authorwosidDNA-4527-2022
dc.authorwosidAAC-5860-2019
dc.contributor.authorPolattimur, Rukiye
dc.contributor.authorDandıl, Emre
dc.date.accessioned2024-10-24T12:46:27Z
dc.date.available2024-10-24T12:46:27Z
dc.date.issued2023en_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Elektronik ve Bilgisayar Mühendisliği
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.descriptionBilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projesi - BAP - 2021-01.BŞEÜ.03-02. Bilecik Seyh Edebali Üniversity Scientific Research Project - BAP - 2021-01.BŞEÜ.03-02.en_US
dc.description.abstractThe human spinal cord is a highly organized and complex part of the central nervous system. In particular, GM in the spinal cord is associated with many neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), etc. In addition, the accurate determination of GM in the spinal cord by volume is very important for the diagnosis of spinal cord lesions and other neurological diseases at an early stage. Clinical symptoms/signs, cerebrospinal fluid examinations, evoked potentials, and magnetic resonance imaging (MRI) findings are used in the diagnosis of neurological diseases in the spinal cord region. However, since the spinal cord area does not have a definite geometric shape and is not flat along the back, artifacts often occur in MR scans obtained from the region and it is more difficult to determine the boundaries of the spinal cord area and to detect the lesions in this region. In this chapter, automatic segmentation of spinal cord GM on MR images using U-Net deep learning architecture is proposed. Spinal cord gray matter segmentation challenge (SCGMC) publicly available dataset is used in the study for experimental studies. In this dataset, the spinal cord GM region is successfully segmented using the U-Net architecture. In experimental studies, score of 0.83 is achieved for the dice similarity coefficient (DSC) in segmentation of GM. As a result, it has been confirmed that the spinal cord GM can be segmented with high accuracy with the U-Net architecture proposed in the study.en_US
dc.identifier.citationPolattimur, R., & Dandil, E. (2023). Automatic Segmentation of Spinal Cord Gray Matter from MR Images using a U-Net Architecture. In Explainable Artificial Intelligence for Biomedical Applications (pp. 245-264). River Publishers.en_US
dc.identifier.doi10.1201/9781032629353
dc.identifier.endpage264en_US
dc.identifier.scopus2-s2.0-85164001742
dc.identifier.scopusOldid2-s2.0-85164001742
dc.identifier.scopusqualityN/A
dc.identifier.startpage245en_US
dc.identifier.urihttps://doi.org/10.1201/9781032629353
dc.identifier.urihttps://hdl.handle.net/11552/3684
dc.indekslendigikaynakScopus
dc.institutionauthorPolattimur, Rukiye
dc.institutionauthorDandıl, Emre
dc.language.isoen
dc.publisherRiver Publishersen_US
dc.relation.bapinfo:eu-repo/grantAgreement/BAP/BŞEÜ/2021-01.BŞEÜ.03-02
dc.relation.ispartofExplainable Artificial Intelligence for Biomedical Applications
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAutomatic Segmentationen_US
dc.subjectUNeten_US
dc.subjectAksiyal MRIen_US
dc.subjectGray Matteren_US
dc.subjectWhite Matteren_US
dc.subjectSpinal Corden_US
dc.titleAutomatic Segmentation of Spinal Cord Gray Matter from MR Images using a U-Net Architecture
dc.typeBook Chapter

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
9781032629353_previewpdf.pdf
Boyut:
3.67 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Kitap Bölümü

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: