Generalized Bicomplex Numbers and Lie Groups

dc.contributor.authorKarakus, Siddika Ozkaldi
dc.contributor.authorAksoyak, Ferdag Kahraman
dc.date.accessioned2025-05-20T18:59:58Z
dc.date.issued2015
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractIn this paper, we define the generalized bicomplex numbers and give some algebraic properties of them. Also, we show that some hyperquadrics in and are Lie groups by using generalized bicomplex number product and obtain Lie algebras of these Lie groups. Moreover, by using tensor product surfaces, we determine some special Lie subgroups of these hyperquadrics.
dc.identifier.doi10.1007/s00006-015-0545-x
dc.identifier.endpage963
dc.identifier.issn0188-7009
dc.identifier.issn1661-4909
dc.identifier.issue4
dc.identifier.scopus2-s2.0-84945443915
dc.identifier.scopusqualityQ3
dc.identifier.startpage943
dc.identifier.urihttps://doi.org/10.1007/s00006-015-0545-x
dc.identifier.urihttps://hdl.handle.net/11552/8704
dc.identifier.volume25
dc.identifier.wosWOS:000363232700014
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherSpringer Basel Ag
dc.relation.ispartofAdvances in Applied Clifford Algebras
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectLie group
dc.subjectBicomplex number
dc.subjectSurfaces in Euclidean space
dc.subjectSurfaces in pseudo-Euclidean space
dc.titleGeneralized Bicomplex Numbers and Lie Groups
dc.typeArticle

Dosyalar