Advancements in Deep Learning for Electrical Consumption Forecasting : A Review of 2019 - 2023 Studies for LSTM

dc.authorid0000-0002-4088-7596
dc.authorid0000-0001-8520-3007
dc.authorscopusid57205571347
dc.authorwosidGRR-7523-2022
dc.contributor.authorCihan, Ayşen
dc.contributor.authorMarttin, Vedat
dc.date.accessioned2024-10-24T12:49:00Z
dc.date.available2024-10-24T12:49:00Z
dc.date.issued2023en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description.abstractDeep learning (DL) is a machine learning methodology that leverages learning algorithms based on artificial neural networks(ANN) to enable computers to perceive intricate structures and patterns in data and effectively utilize them (Patchaiammal P.and Sundar, 2022). In essence, DL constitutes a set of algorithms capable of addressing complex problems by emulating the structural attributes of the human brain (Forootan et al., 2022). DL offers numerous advantages, such as the extraction of high-level characteristics from data, the ability to process data irrespective of its labeled or unlabeled nature, and the adaptability to be trained for diverse objectives. DL algorithms commonly demonstrate remarkable predictive capabilities in time series data. DL comprises three primary types of neural network architectures, namely ANN, Convolutional Neural Networks(CNN), and RNN (Patchaiammal P.and Sundar, 2022). Noteworthy deep learning algorithms in the literature include LSTM, RNN, GRU, CNN and Feed forward Neural Networks. In the following sections of the study, information about RNN, LSTM, GRU is given. Afterwards, the literature study is given. Before the conclusion part, general information about performance methods is given.en_US
dc.identifier.citationCİHAN, A., & MARTTİN, V. (2023). ADVANCEMENTS IN DEEP LEARNING FOR ELECTRICAL CONSUMPTION FORECASTING: A REVIEW OF. Academic Research and Reviews in Engineering Sciences, 275.en_US
dc.identifier.doi10.5281/zenodo.10060775
dc.identifier.endpage285en_US
dc.identifier.isbn978-625-6517-61-5
dc.identifier.startpage269en_US
dc.identifier.urihttps://doi.org/10.5281/zenodo.10060775
dc.identifier.urihttps://hdl.handle.net/11552/3685
dc.institutionauthorCihan, Ayşen
dc.institutionauthorMarttin, Vedat
dc.language.isoen
dc.publisherPlatanus Publishingen_US
dc.relation.ispartofAcademic research and Reviews in Engineering Science
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLSTMen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectElectricity Consumption Predictionen_US
dc.subjectDeep Learningen_US
dc.subjectTime Seriesen_US
dc.titleAdvancements in Deep Learning for Electrical Consumption Forecasting : A Review of 2019 - 2023 Studies for LSTM
dc.typeBook Chapter

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
9061.pdf
Boyut:
1.16 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Kitap Bölümü

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: