Opposition Learning based Single Candidate Optimizer for Clustering Problems

dc.authorid0009-0000-6825-9324
dc.authorid0000-0002-5364-6265
dc.contributor.authorDoğan, Cihat
dc.contributor.authorYüzgeç, Uğur
dc.date.accessioned2024-10-22T09:00:04Z
dc.date.available2024-10-22T09:00:04Z
dc.date.issued2023en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description.abstractIn this study, we propose a novel optimization algorithm called Opposition Learning based Single Candidate Optimization (OppSCO) by incorporating an opposition learning mechanism into the Single Candidate Optimization (SCO) algorithm. The performance of the two algorithms is evaluated on a clustering problem. The proposed OppSCO algorithm demonstrates superior convergence compared to the original SCO algorithm. Furthermore, the OppSCO algorithm is compared with classical heuristic optimization algorithms such as Genetic Algorithm (GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results indicate that the OppSCO algorithm outperforms the original SCO algorithm in terms of convergence and solution quality.en_US
dc.identifier.citationDoğan, C., & Yüzgeç, U. (2023). Opposition learning based single candidate optimizer for clustering problems, 11th International Congress of Academic Studies (ICAR23), 515–522.en_US
dc.identifier.endpage522en_US
dc.identifier.startpage515en_US
dc.identifier.urihttps://hdl.handle.net/11552/3669
dc.institutionauthorDoğan, Cihat
dc.institutionauthorYüzgeç, Uğur
dc.language.isoen
dc.relation.ispartof11. Uluslararası Akademik Araştırmalar Kongresi
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectOpposition Learningen_US
dc.subjectClusteringen_US
dc.subjectMetaheuristicen_US
dc.subjectOptimizationen_US
dc.titleOpposition Learning based Single Candidate Optimizer for Clustering Problems
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
icar23_tam_metin_bildiri2_Cihat_Dogan[1].pdf
Boyut:
3.05 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Tam Metin Bildiri

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: