An algorithm to minimize within-class scatter and to reduce common matrix dimension for image recognition

dc.contributor.authorTurhal, Umit Cigdem
dc.contributor.authorDuysak, Alpaslan
dc.date.accessioned2025-05-20T18:53:37Z
dc.date.issued2011
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractIn this paper, a new algorithm using 2DPCA and Gram-Schmidt Orthogonalization Procedure for recognition of face images is proposed. The algorithm consists of two parts. In the first part, a common feature matrix is obtained; and in the second part, the dimension of the common feature matrix is reduced. Resulting common feature matrix with reduced dimension is used for face recognition. Column and row covariance matrices are obtained by applying 2DPCA on the column and row vectors of images, respectively. The algorithm then applies eigenvalue-eigenvector decomposition to each of these two covariance matrices. Total scatter maximization is achieved taking the projection of images onto d eigenvectors corresponding to the largest d eigenvalues of column covariance matrix, yielding the feature matrix. The each column of the feature matrix represents a feature vector. Minimization of within class scatter is achieved by reducing the redundancy of the corresponding feature vectors of the different images in the same class. A common feature vector for each d(th) eigenvector direction is obtained by applying Gram-Schmidt Orthogonalization Procedure. A common feature matrix is established by gathering d common feature vectors in a matrix form. Then, the dimension of common feature matrix is reduced to d x d taking the projection of common feature matrix onto d eigenvectors which corresponds to the largest d eigenvalues of row covariance matrix. The performance of the proposed algorithm is evaluated experimentally by measuring the recognition rates. The developed algorithm produced better recognition rates compared to Eigenface, Fisherface and 2DPCA methods. Ar-Face and ORL face databases are used in the experimental evaluations.
dc.identifier.doi10.3906/elk-1003-403
dc.identifier.endpage939
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.issue6
dc.identifier.scopus2-s2.0-79961089177
dc.identifier.scopusqualityQ2
dc.identifier.startpage929
dc.identifier.trdizinid120206
dc.identifier.urihttps://doi.org/10.3906/elk-1003-403
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/120206
dc.identifier.urihttps://hdl.handle.net/11552/6946
dc.identifier.volume19
dc.identifier.wosWOS:000295497900009
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakTR-Dizin
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.language.isoen
dc.publisherTubitak Scientific & Technological Research Council Turkey
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subject2DPCA
dc.subjectGram-Schmidt orthogonalization
dc.subjectcommon feature matrix
dc.subjectface recognition
dc.subjecttotal scatter maximization
dc.subjectwithin-class scatter minimization
dc.titleAn algorithm to minimize within-class scatter and to reduce common matrix dimension for image recognition
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Yayıncı Kopyası_Makale.pdf
Boyut:
436.6 KB
Biçim:
Adobe Portable Document Format