Privacy-Preserving Collaborative Filtering System For Book-Crossing Dataset

dc.authorid0000-0003-3588-1752
dc.authorid0000-0002-0857-0871
dc.contributor.authorAçıl, Elif Tuğçe
dc.contributor.authorYargıç, Alper
dc.date.accessioned2023-10-18T10:34:07Z
dc.date.available2023-10-18T10:34:07Z
dc.date.issued2022en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description.abstractWeb services that store and use their users’ sensitive data can cause privacy violation issues. Using personal preferences to generate predictions may increase individuals’ privacy risks in collaborative recommendation systems. Users who worry about privacy violations may be willing to provide false information and sometimes refuse to use these services. As a result, the recommender system’s prediction generation quality will decrease because it is an undeniable fact that the accuracy of prediction is directly related to the quality of the collected user data. It is crucial to discuss the privacy risks that may arise from the use of such systems and to protect user data privacy with accepted privacy protection mechanisms to alleviate user concerns. In this study, we evaluate the randomized perturbation-based privacy protection mechanism on a traditional memory-based collaborative filtering system that used the Book-Crossing dataset. We also compared recommendation accuracy over varying levels of privacy to find a balance between accuracy and privacy issues. Experimental results based on real-world user data show that a privacy-preserving scheme maintains the confidentiality of personal preferences without severely compromising prediction accuracy.en_US
dc.identifier.citationYargıç, Alper, Açıl, Elif Tuğçe. Privacy-Preserving Collaborative Filtering System For Book-Crossing Dataset, VI-INTERNATIONAL EUROPEAN CONFERENCE ON INTERDISCIPLINARY SCIENTIFIC RESEARCH. (289-295)en_US
dc.identifier.endpage295en_US
dc.identifier.issue1en_US
dc.identifier.startpage289en_US
dc.identifier.urihttps://hdl.handle.net/11552/3193
dc.identifier.volume1en_US
dc.institutionauthorAçıl, Elif Tuğçe
dc.institutionauthorYargıç, Alper
dc.language.isoen
dc.publisherIKSADen_US
dc.relation.ispartofVI. International European Conference on Interdisciplinary Scientific Research
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPrivacy-Preserving Collaborative Filteringen_US
dc.subjectRecommender Systemsen_US
dc.subjectRandomized Perturbationen_US
dc.titlePrivacy-Preserving Collaborative Filtering System For Book-Crossing Dataset
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Privacy-Preserving Collaborative Filtering System for Book-Crossing Dataset.pdf
Boyut:
224.54 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Tam Metin Bildiri

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: