Electrochemical Characterization of Carbonized Typha Tassel Modified ScreenPrinted Electrode and Its Enzymatic Glucose Oxidation Application

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hacettepe Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Converting biomass into cheaper but valuable products is very important for a more sustainable world. Especially with emerging technology, the use of hazardous materials in the synthesis of substances such as carbonaceous materials pose a threat to our environment. In this study, electrochemical performance of a carbonaceous material synthesized from typha tassel using a simple and cheap method without any hazardous substances was investigated. It was then used as an enzyme immobilization material for electrochemical glucose oxidation to demonstrate its potential application in bioelectronics. Physical and chemical characterization of raw typha tassel (RTT) and carbonized typha tassel (CTT) were performed using SEM and FTIR techniques. CTT, was then grounded into fine powder, dispersed in DMF and coated onto screen-printed electrodes (SPEs). CTT modified SPEs were electrochemically tested using cyclic voltammetry in 0.1 M phosphate buffer containing 1 mM ferrocene carboxylic acid as a redox mediator at pH 7.4 Finally, glucose oxidase enzyme was adsorbed on CTT modified SPEs to demonstrate its performance in electrochemical enzymatic glucose oxidation reactions. SPE/CTT/GOx system showed promising electrochemical activity and stability at physiological conditions as well as good activity with adsorbed enzyme. This study suggests that CTT is very promising for an easy, effective and cheap ‘biomass to bioelectronics’ construction material

Açıklama

Anahtar Kelimeler

Carbonaceous Materials, Bioelectronics, Electrochemistry, Typha

Kaynak

Hacettepe Journal of Biology and Chemistry

WoS Q Değeri

Scopus Q Değeri

Cilt

47

Sayı

3

Künye

Şahin, S. (2019). Electrochemical Characterization of Carbonized Typha Tassel Modified ScreenPrinted Electrode and Its Enzymatic Glucose Oxidation Application. Hacettepe Journal of Biology and Chemistry, 47(3), 287-294.

Onay

İnceleme

Ekleyen

Referans Veren