Accelerated Opposition Learning based Single Candidate Optimization Algorithm

dc.authorid0009-0000-6825-9324
dc.authorid0000-0002-5364-6265
dc.contributor.authorDoğan, Cihat
dc.contributor.authorYüzgeç, Uğur
dc.date.accessioned2024-10-22T09:15:56Z
dc.date.available2024-10-22T09:15:56Z
dc.date.issued2023en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description.abstractIn order to address optimization problems effectively, the development of efficient optimization algorithms holds paramount importance. This study focuses on developing the search capability of the Single Candidate Optimization (SCO) algorithm, introduced by Shami et al. in 2022. Distinguishing itself from other population-based heuristic algorithms, the SCO algorithm aims to expedite the solution-finding process by employing a single candidate solution. In this study, the improvement of the SCO algorithm incorporates an accelerated opposition-based learning mechanism (AccOppSCO). To assess the performance of the proposed AccOppSCO algorithm, it was tested for various optimization problems from the literature. The evaluation revealed that the AccOppSCO algorithm can generate more accurate solutions compared to the original SCO algorithm.en_US
dc.identifier.citationDoğan, C., & Yüzgeç, U. (2023). Accelerated opposition learning based single candidate optimization algorithm, 11th International Congress of Academic Studies (ICAR23), 506–514.en_US
dc.identifier.endpage514en_US
dc.identifier.startpage506en_US
dc.identifier.urihttps://hdl.handle.net/11552/3670
dc.institutionauthorDoğan, Cihat
dc.institutionauthorYüzgeç, Uğur
dc.language.isoen
dc.publisherASOS Yayınevien_US
dc.relation.ispartof11. Uluslararası Akademik Araştırmalar Kongresi
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectOpposition Learningen_US
dc.subjectHeuristic Algorithmen_US
dc.subjectSingle Candidate Optimization Algorithmen_US
dc.titleAccelerated Opposition Learning based Single Candidate Optimization Algorithm
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
icar23_tam_metin_bildiri1_Cihat_Dogan[1].pdf
Boyut:
3.09 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Tam Metin Bildiri

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: