Accelerated Opposition Learning based Single Candidate Optimization Algorithm
dc.authorid | 0009-0000-6825-9324 | |
dc.authorid | 0000-0002-5364-6265 | |
dc.contributor.author | Doğan, Cihat | |
dc.contributor.author | Yüzgeç, Uğur | |
dc.date.accessioned | 2024-10-22T09:15:56Z | |
dc.date.available | 2024-10-22T09:15:56Z | |
dc.date.issued | 2023 | en_US |
dc.department | Enstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı | |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | In order to address optimization problems effectively, the development of efficient optimization algorithms holds paramount importance. This study focuses on developing the search capability of the Single Candidate Optimization (SCO) algorithm, introduced by Shami et al. in 2022. Distinguishing itself from other population-based heuristic algorithms, the SCO algorithm aims to expedite the solution-finding process by employing a single candidate solution. In this study, the improvement of the SCO algorithm incorporates an accelerated opposition-based learning mechanism (AccOppSCO). To assess the performance of the proposed AccOppSCO algorithm, it was tested for various optimization problems from the literature. The evaluation revealed that the AccOppSCO algorithm can generate more accurate solutions compared to the original SCO algorithm. | en_US |
dc.identifier.citation | Doğan, C., & Yüzgeç, U. (2023). Accelerated opposition learning based single candidate optimization algorithm, 11th International Congress of Academic Studies (ICAR23), 506–514. | en_US |
dc.identifier.endpage | 514 | en_US |
dc.identifier.startpage | 506 | en_US |
dc.identifier.uri | https://hdl.handle.net/11552/3670 | |
dc.institutionauthor | Doğan, Cihat | |
dc.institutionauthor | Yüzgeç, Uğur | |
dc.language.iso | en | |
dc.publisher | ASOS Yayınevi | en_US |
dc.relation.ispartof | 11. Uluslararası Akademik Araştırmalar Kongresi | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı ve Öğrenci | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Opposition Learning | en_US |
dc.subject | Heuristic Algorithm | en_US |
dc.subject | Single Candidate Optimization Algorithm | en_US |
dc.title | Accelerated Opposition Learning based Single Candidate Optimization Algorithm | |
dc.type | Conference Object |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- icar23_tam_metin_bildiri1_Cihat_Dogan[1].pdf
- Boyut:
- 3.09 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Yayıncı Kopyası_Tam Metin Bildiri
Lisans paketi
1 - 1 / 1
Yükleniyor...
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: