A New Classification Approach with Deep Mask R-CNN for Synthetic Aperture Radar Image Segmentation

dc.authorid0000-0002-1105-9169
dc.authorscopusid57212215900
dc.authorwosidAAK-4407-2021
dc.contributor.authorYayla, Rıdvan
dc.contributor.authorŞen, Baha
dc.date.accessioned2022-03-30T14:29:38Z
dc.date.available2022-03-30T14:29:38Z
dc.date.issued2020en_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description.abstractIn this paper, a hybrid classification approach which is combined with a more deep mask regionconvolutional neural network and sparsity driven despeckling algorithm is proposed for synthetic aperture radar (SAR) image segmentation instead of the classical segmentation methods. In satellite technology, synthetic aperture radar images are strongly used for a lot of areas, such as evaluating air conditions, determining agricultural fields, climatic changes, and as a target in the military. Synthetic aperture radar images must be segmented to each meaningful point in the image for a quality segmentation process. In contrast, synthetic aperture radar images have a lot of noisy speckles and these speckles should be also reduced for a quality segmentation. Current studies show that deep learning techniques are widely used for segmentation methods. High accuracy and fast results can be obtained with deep learning techniques for image segmentation. Mask region-convolutional neural network can not only separate each meaningful field in the image, but it can also generate a high accuracy prediction for each meaningful field of synthetic aperture radar images. The study shows that smoothed SAR images can be classified as multiple regions with deep neural networksen_US
dc.identifier.citationYayla, R., & Sen, B. (2020). A new classification approach with deep mask R-CNN for synthetic aperture radar image segmentation. Elektronika Ir Elektrotechnika, 26(6), 52-57. doi:10.5755/j01.eie.26.6.25849en_US
dc.identifier.doi10.5755/j01.eie.26.6.25849
dc.identifier.endpage57en_US
dc.identifier.issn1392-1215
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85098131502
dc.identifier.scopusqualityQ3
dc.identifier.startpage52en_US
dc.identifier.urihttps://doi.org/10.5755/j01.eie.26.6.25849
dc.identifier.urihttps://hdl.handle.net/11552/2409
dc.identifier.volume26en_US
dc.identifier.wosWOS:000604932300007
dc.identifier.wosqualityQ4
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.institutionauthorYayla, Rıdvan
dc.language.isoen
dc.publisherKaunas University of Technologyen_US
dc.relation.ispartofElektronika Ir Elektrotechnika
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectImage Segmentationen_US
dc.subjectNeural Networksen_US
dc.subjectRadar Imagingen_US
dc.subjectSynthetic Aperture Radaren_US
dc.titleA New Classification Approach with Deep Mask R-CNN for Synthetic Aperture Radar Image Segmentation
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
25849-Article Text-93493-1-10-20201216.pdf
Boyut:
1.69 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Makale Dosyası

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: