Cancerous Lesion Detection from Nevoscope Skin Surface Images via Parametric Color Clustering

dc.authoridAkinlar, Mehmet Ali/0000-0002-7005-8633
dc.authoridCelenk, Mehmet/0000-0001-7104-5861
dc.contributor.authorDhinagar, Nikhil J.
dc.contributor.authorGlasgo, Ivan
dc.contributor.authorCelenk, Mehmet
dc.contributor.authorAkinlar, Mehmet A.
dc.date.accessioned2025-05-20T19:01:11Z
dc.date.issued2012
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.descriptionChinese Conference on Pattern Recognition -- SEP 24-26, 2012 -- Beijing, PEOPLES R CHINA
dc.description.abstractThis paper describes a new approach to analyze the spectral information of the samples of skin tissue that are localized in the spatial plane of microscopic image for discrimination of three different skin cancerous lesion prognoses. First, a cancerous lesion image is segmented from the skin surface based on Otsu's optimal histogram thresholding technique. This allows us to localize the abnormal area in the skin tissue that is affected most as compared to the surrounding cells that appear brighter in color. Color clusters of the segmented darker lesions are used to obtain the three-dimensional (3D) spectral distribution function in the (R, G, B) color space. The Maximum Likelihood (ML) parameter estimation is utilized for calculation of the mean vector and co-variance matrix of the Gaussian (or normal) density approximation of skin samples and with the Mahalonobis distance as similarity measure in the learning and the testing phases of the pattern recognition system.
dc.description.sponsorshipCAS, Inst Automat,Natl Lab Pattern Recognition
dc.identifier.endpage+
dc.identifier.isbn978-3-642-33505-1
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.scopus2-s2.0-84867128097
dc.identifier.scopusqualityQ1
dc.identifier.startpage367
dc.identifier.urihttps://hdl.handle.net/11552/9037
dc.identifier.volume321
dc.identifier.wosWOS:000312434700046
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Conference Proceedings Citation Index-Science
dc.language.isoen
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofPattern Recognition
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectSkin cancer lesion detection
dc.subjectMaximum Likelihood (ML) parameter estimation
dc.subjectMahalonobis distance classifier
dc.subjectColor Clustering
dc.titleCancerous Lesion Detection from Nevoscope Skin Surface Images via Parametric Color Clustering
dc.typeConference Object

Dosyalar