On the Privacy of Horizontally Partitioned Binary Data-Based Privacy-Preserving Collaborative Filtering

dc.authoridKoc, Mehmet/0000-0003-2919-6011
dc.contributor.authorOkkalioglu, Murat
dc.contributor.authorKoc, Mehmet
dc.contributor.authorPolat, Huseyin
dc.date.accessioned2025-05-20T18:59:59Z
dc.date.issued2016
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description10th Data Privacy Management International Workshop (DPM) / 4th International Workshop in Quantitative Aspects in Security Assurance (QASA) -- SEP 21-22, 2015 -- Vienna, AUSTRIA
dc.description.abstractCollaborative filtering systems provide recommendations for their users. Privacy is not a primary concern in these systems; however, it is an important element for the true user participation. Privacy-preserving collaborative filtering techniques aim to offer privacy measures without neglecting the recommendation accuracy. In general, these systems rely on the data residing on a central server. Studies show that privacy is not protected as much as believed. On the other hand, many e-companies emerge with the advent of the Internet, and these companies might collaborate to offer better recommendations by sharing their data. Thus, partitioned data-based privacy-persevering collaborative filtering schemes have been proposed. In this study, we explore possible attacks on two-party binary privacy-preserving collaborative filtering schemes and evaluate them with respect to privacy performance.
dc.description.sponsorshipInst Mines Telecom,CNRS Samovar UMR 5157,UNESCO Chair Data Privacy,Univ Autonoma Barcelona,Internet Interdisciplinary Inst,Open Univ Catalonia
dc.identifier.doi10.1007/978-3-319-29883-2_13
dc.identifier.endpage214
dc.identifier.isbn978-3-319-29883-2
dc.identifier.isbn978-3-319-29882-5
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-84961153207
dc.identifier.scopusqualityQ3
dc.identifier.startpage199
dc.identifier.urihttps://doi.org/10.1007/978-3-319-29883-2_13
dc.identifier.urihttps://hdl.handle.net/11552/8714
dc.identifier.volume9481
dc.identifier.wosWOS:000375376900013
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWoS
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS - Conference Proceedings Citation Index-Science
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofData Privacy Management, and Security Assurance
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectPrivacy
dc.subjectCollaborative filtering
dc.subjectBinary data
dc.subjectAttack scenarios
dc.titleOn the Privacy of Horizontally Partitioned Binary Data-Based Privacy-Preserving Collaborative Filtering
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Yayıncı Kopyası_Makale.pdf
Boyut:
1.31 MB
Biçim:
Adobe Portable Document Format