Multiple decomposition-aided long short-term memory network for enhanced short-term wind power forecasting

dc.authorid0000-0003-0086-5584
dc.authorid0000-0002-4576-1941
dc.authorid0000-0002-5364-6265
dc.contributor.authorBalcı, Mehmet
dc.contributor.authorDokur, Emrah
dc.contributor.authorYüzgeç, Uğur
dc.contributor.authorErdoğan, Nuh
dc.date.accessioned2024-09-24T06:07:50Z
dc.date.available2024-09-24T06:07:50Z
dc.date.issued2024en_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Elektronik ve Bilgisayar Mühendisliği
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
dc.description.abstractWith the increasing penetration of grid-scale wind energy systems, accurate wind power forecasting is critical to optimizing their integration into the power system, ensuring operational reliability, and enabling efficient system asset utilization. Addressing this challenge, this study proposes a novel forecasting model that combines the long-short-term memory (LSTM) neural network with two signal decomposition techniques. The EMD technique effectively extracts stable, stationary, and regular patterns from the original wind power signal, while the VMD technique tackles the most challenging high-frequency component. A deep learning-based forecasting model, i.e. the LSTM neural network, is used to take advantage of its ability to learn from longer sequences of data and its robustness to noise and outliers. The developed model is evaluated against LSTM models employing various decomposition methods using real wind power data from three distinct offshore wind farms. It is shown that the two-stage decomposition significantly enhances forecasting accuracy, with the proposed model achieving R2 values up to 9.5% higher than those obtained using standard LSTM models.en_US
dc.identifier.citationBalci, M., Dokur, E., Yuzgec, U., & Erdogan, N. (2024). Multiple decomposition‐aided long short‐term memory network for enhanced short‐term wind power forecasting. IET Renewable Power Generation, 18(3), 331-347.en_US
dc.identifier.doi10.1049/rpg2.12919
dc.identifier.endpage347en_US
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85180860813
dc.identifier.scopusqualityQ2
dc.identifier.startpage331en_US
dc.identifier.urihttps://doi.org/10.1049/rpg2.12919
dc.identifier.urihttps://hdl.handle.net/11552/3628
dc.identifier.volume18en_US
dc.identifier.wosWOS:001130415400001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWoS
dc.indekslendigikaynakWoS - Science Citation Index Expanded
dc.institutionauthorBalcı, Mehmet
dc.institutionauthorDokur, Emrah
dc.institutionauthorYüzgeç, Uğur
dc.language.isoen
dc.publisherWileyen_US
dc.relation.ispartofIET Renewable Power Generation
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtificial Intelligenceen_US
dc.subjectForecasting Theoryen_US
dc.subjectSignal Processingen_US
dc.subjectWind Poweren_US
dc.titleMultiple decomposition-aided long short-term memory network for enhanced short-term wind power forecasting
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Multiple decomposition‐aided long short‐term memory network for enhanced.pdf
Boyut:
10.15 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: