Hardware Implementation of Artificial Neural Network Training Using Particle Swarm Optimization on FPGA

dc.authoridKarakuzu, Cihan/0000-0003-0569-098X
dc.contributor.authorCavuslu, Mehmet Ali
dc.contributor.authorKarakuzu, Cihan
dc.contributor.authorSahin, Suhap
dc.date.accessioned2025-05-20T18:54:07Z
dc.date.issued2010
dc.departmentBilecik Şeyh Edebali Üniversitesi
dc.description.abstractIn this study, a new ANN training approximation on FPGA is presented using parallel processes according to the nature of ANN. Training is implemented on FPGA using particle swarm optimization (PSO) stochastic search algorithm which does not need any derivative information. All related parameter values and processes are defined with IEEE 754 floating point numbers format. Proposed approach has been realized on Altera EP2C35F672C6 FPGA based on a sample ANN architecture using VHDL language. Obtained results show that proposed approach has successfully achieved ANN training.
dc.identifier.doi10.2339/2010.13.2.83-92
dc.identifier.endpage92
dc.identifier.issn1302-0900
dc.identifier.issn2147-9429
dc.identifier.issue2
dc.identifier.scopusqualityN/A
dc.identifier.startpage83
dc.identifier.urihttps://doi.org/10.2339/2010.13.2.83-92
dc.identifier.urihttps://hdl.handle.net/11552/7207
dc.identifier.volume13
dc.identifier.wosWOS:000447802700002
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWoS
dc.indekslendigikaynakWoS - Emerging Sources Citation Index
dc.language.isotr
dc.publisherGazi Univ
dc.relation.ispartofJournal of Polytechnic-Politeknik Dergisi
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250518
dc.subjectANN training
dc.subjectPSO
dc.subjectFPGA
dc.subjectFloating point number
dc.titleHardware Implementation of Artificial Neural Network Training Using Particle Swarm Optimization on FPGA
dc.typeArticle

Dosyalar