Performance Analysis of Extreme Learning Machine Classifiers on Radio Frequency Fingerprinting

dc.authorid0000-0001-8455-5625
dc.authorid0000-0003-0569-098X
dc.authorscopusid57188860179
dc.contributor.authorParmaksız, Hüseyin
dc.contributor.authorKarakuzu, Cihan
dc.date.accessioned2023-08-16T11:27:59Z
dc.date.available2023-08-16T11:27:59Z
dc.date.issued2022en_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Elektronik ve Bilgisayar Mühendisliği
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description.abstractInternet of Things (IoT)is utilized in practically every industry. As IoT becomes more common, the number of wireless communication devices grows. The notion of security becomes more crucial as the number of devices and network grows.Due to welding constraints on IoT devices, the security can not be guaranteed.Radio frequency fingerprinting (RFF) methods, according to the literature, are utilized as an extra safety layer for wireless devices. Unique fingerprints due to the production defects of the devicesare used to identify wireless devices for security purposes in order to avoidfraud or fraud attempts. In this study, a ready-made dataset, consisting of 3985 registered samples and transformed to nine extracted features, from four WiFi Access Point(AP)devices was used. Using this data set, classification performances of Extreme Learning Machine (ELM), Constrained ELMs(CELMs), and Meta-ELM techniques are examined. Considering the classification performance of the Meta-ELM algorithm, it is concluded that it can be used in RF fingerprintingresearch due to itssuperior performance.The use of Meta-ELM in multiple classification problems will be a novelty in the literature.en_US
dc.identifier.citationParmaksız, H., & Karakuzu, C. Performance analysis of Extreme Learning Machine Classifiers on Radio Frequency Fingerprinting. BSEU Engineering Research and Technology (BSEUJERT), 3(2), 1-7en_US
dc.identifier.endpage7en_US
dc.identifier.issue2en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://bseujert.bilecik.edu.tr/index.php/bseujert/issue/view/5/23
dc.identifier.urihttps://hdl.handle.net/11552/3132
dc.identifier.volume3en_US
dc.institutionauthorParmaksız, Hüseyin
dc.institutionauthorKarakuzu, Cihan
dc.language.isoen
dc.publisherBilecik Şeyh Edebali Üniversitesien_US
dc.relation.bapinfo:eu-repo/grantAgreement/BAP/BŞEÜ/2021-01.BŞEÜ.01-01
dc.relation.ispartofBSEU Journal of Engineering Research and Technology
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subjectInternet of Thingsen_US
dc.subjectRadio Frequency Fingerprintingen_US
dc.subjectExtreme Learning Machinesen_US
dc.subjectFingerprint Classificationen_US
dc.titlePerformance Analysis of Extreme Learning Machine Classifiers on Radio Frequency Fingerprinting
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
5-48-PB.pdf
Boyut:
1.28 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Kopyası_Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: