Monad Metrizable Space

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Do the topologies of each dimension have to be same and metrizable for metricization of any space? I show that this is not necessary with monad metrizable spaces. For example, a monad metrizable space may have got any indiscrete topologies, discrete topologies, different metric spaces, or any topological spaces in each different dimension. I compute the distance in real space between such topologies. First, the passing points between different topologies is defined and then a monad metric is defined. Then I provide definitions and some properties about monad metrizable spaces and PAS metric spaces. I show that any PAS metric space is also a monad metrizable space. Moreover, some properties and some examples about them are presented.

Açıklama

Anahtar Kelimeler

soft set theory, soft metric space, amply soft set, amply soft monad point, AS topology, PAS topology, PAS metric space, monad metrizable space, monad metric space, P-i, i=0, 1, 2, 3, 4, parametric separation axioms

Kaynak

Mathematics

WoS Q Değeri

Scopus Q Değeri

Cilt

8

Sayı

11

Künye

Onay

İnceleme

Ekleyen

Referans Veren